Google’s quantum computer suggests that wormholes are real


Perhaps wormholes will no longer be relegated to the realm of science fiction.

An image of a spiral galaxy with a purple light coming out of it.
A wormhole is the one way, in the context of general relativity, that immediate transport between two disparate, disconnected events in spacetime can occur. These “bridges” are mathematical curiosities only at this point in time; no physical wormholes have ever been found to exist or have ever been created, but if one were discovered it could immediately test general relativity’s predictions, as well as any alternative competitors. Image credit: Adobe Stock / Nikita Kuzmenkov

Albert Einstein is rightfully considered one of the most impactful physicists of all times.  He created his various theories of relativity, which govern the behavior of matter moving at tremendous speeds and reimagined the force of gravity as the bending of space and time. He also wrote prodigiously on the idiosyncrasies of quantum mechanics, rejecting it as being fundamentally incorrect, yet exploring the implications of the theory.

While Einstein’s reputation as a genius is secure, a little extra validation never hurts, especially when it revolves around one of Einstein’s most exotic predictions: wormholes, or tunnels through space.

A consortium of researchers from Caltech, Google, Fermilab, MIT, and Harvard used a device called the Sycamore quantum processor to generate and control what is equivalent to a wormhole. (The Sycamore is a quantum computer developed by Google.) How does this work? It comes down to intricate interconnections between two of Einstein’s ideas.

Wormholes and quantum entanglement

In 1935, Einstein was working with his student Nathan Rosen on ways to convert his theory of gravity, called the theory of general relativity, into a theory of everything. One problem was that the theory predicted infinities at the center of black holes. These infinities arose when the total mass of a dead star collapsed down into a spot of zero size, what are called singularities.

Rosen and Einstein played around with other possible solutions, including using some creative mathematics to replace two singularities with a tube that connected them. These tubes are called Einstein-Rosen bridges or, more colloquially, wormholes. In principle, it would be possible to have an object enter one wormhole and exit the other, even though the ends of the wormholes are separated by large distances. The object would have traveled through extra dimensions. This work is called ER theory.

Wormholes are favorites of science fiction writers, as they provide the possibility of faster-than-light travel. Spacecraft could travel large distances in zero time. While there are many practical problems involved with making wormholes, an especially important one is that they are unstable unless stabilized by large amounts of negative energy.

That same year, Einstein and Rosen also worked on a topic in quantum mechanics, this time with another physicist by the name of Boris Podolsky. This topic involved quantum entanglement, which considers the behavior of two objects that were initially in contact with one another so that their properties are intertwined. While the properties of neither object were determined — that’s part of the craziness of quantum mechanics — the fact that they were the opposite of one another is “baked in” at the outset.

The tricky business was that even if you separated the two objects by enormous distances and measured the properties of one of them, you instantly knew the properties of the other, despite the properties of neither being determined until a measurement was performed. This was called the EPR paradox, after the researchers’ initials.

ER = EPR

Both the ER theory and EPR paradox were considered curiosities for a long time, however it was in the last decade when scientists began to understand that the two ideas had deeper connections. In fact, it has become clear that the two ideas are, in many ways, functionally identical. Two physicists, Juan Maldacena and Leonard Susskind, are often mentioned as having made some of the more crucial contributions to this realization, and it was Maldacena who coined the succinct representation of the observation: “ER = EPR.”

If it is indeed true that ER = EPR, then we are in luck, because, while we cannot create and generate wormholes, we certainly can do EPR measurements. We have done measurements like that for decades.

Wormholes might be real

This is where the new announcement enters the picture. In a paper in Nature, researchers developed a simplified approach to the problem and modeled wormhole behavior on the quantum computer. They found that the result was exactly as expected. They were even able to simulate conditions whereby the theoretical wormhole was governed by positive and negative energy and discovered that, while the positive option was unstable, the negative one was stable — just as ER theory suggests.

To the extent that EPR and ER are mathematically the same, this work implies that wormholes are not just theoretical curiosities.

It is important to note that the researchers did not generate a physical wormhole. No objects were transferred through extra dimensions. Instead, what was demonstrated was quantum behavior. However, since the mathematics of ER and EPR are deeply intertwined, the new result suggests that wormholes are at least a possibility.

Quantum gravity

The deeper implications of this work are that it provides researchers with a laboratory to explore not only ER theory and the EPR paradox but also a theory called quantum gravity, which is the extension of gravity to the world of the super small. A successful theory of quantum gravity has eluded the scientific community for nearly a century, so this new capability may help illuminate a path forward. Indeed, quantum computing has provided the capacity to test ideas that were impossible just a few years ago.

Here’s What We’d Need to Transform Wormholes Into Intergalactic Shortcuts. 


Everyone likes a shortcut and a quick trip somewhere cool, which means that everyone loves a wormhole – at least in theory. In actuality, these space-time tunnels are probably not the alleged intergalactic shortcuts we’re looking for – and this isn’t a mind trick from Obi-Wan, either.

But first, let’s talk about what wormholes are and how they could theoretically allow for faster-than-light travel; it’s always better to build up all of our hopes before dashing them to pieces, I find.

 When physicists started tinkering with general relativity, they predicted that black holes might exist. The same physics that predicts black holes also predicts white holes, which are just what they sound like: the opposite of black holes.

The event horizon of a black hole is a corner of space that is impossible to escape once you’ve entered it. On the other hand, the event horizon of a white hole is impossible to enter – but you can escape if you’re already there.

The wormhole comes in when we learn that all black holes are naturally connected to white holes; these identically opposite twins are joined at the singularities.

Or so the math says. While we’ve seen black holes a-plenty, there’s no evidence at all for white holes – nor any evidence for any process that could form them, or any means for them to stay in existence if they formed, or even any way they could survive their ‘symbiotic’ connections to black holes.

There is just no way they could ever form, or be stable enough to remain once formed. That instability would directly affect any wormholes: they would never be able to last, and would instead stretch and break almost immediately.

If you happened to see a wormhole and went for a ride, you’d be on a one way trip into an event horizon of a black hole. That sounds cool, but remember: you’d then be stretched endlessly and pummeled to death by gravity (and even Anthony Perkins thinks that’s crazy).

 However, some still believe that we can make wormholes work for us, as sort of a next level tube system going all over the universe rather than just beneath London.

To make it work, you’d need to enter just outside the event horizon so you could get through the wormhole without getting done in by gravity first.

You’d also need a tunnel strong and stable enough to handle both the gravitational pummeling mentioned above, and the force of people flying through it at extreme speeds.

blackhole wormhole

What would make that possible? A tunnel made of negative-mass material. Negative-mass materials have not been found in the universe anywhere, although physicists in Washington recently created a fluid with negative-mass.

So will they someday create negative-mass material that you could, say, build a tunnel with? Maybe.

 Will we ever find workable wormholes?

Still, should this really be a priority? There are plenty of reasons why traveling this quickly would mean a lot to humanity: we could explore far reaches of the galaxy, potentially finding alien life, more habitable planets, and whatever else it has to offer – probably a lot.

However, we don’t need to pin all of our hopes on wormholes just because we wish to traverse the galaxy.

First of all, even breakthroughs in physics such as the creation of negative-mass materials are unlikely to lead to workable wormholes.

These fantastical space travel tunnels would violate numerous laws of physics- many of which are very well-tested. The odds of defeating each and every one of them seem long, indeed.

Furthermore, there are a number of other projects in the works that could help us travel faster in space. NASA and others have been studying the EM Drive, a radio frequency resonant cavity thruster that uses microwaves inside a truncated cone to create a thrust at the narrow end of the cone.

If it works, it would mean the ability to create thrust without a propellant – a huge advancement for long-distance space travel. This tech is a long way from being viable, however.

Ion propulsion is already being used once rockets are already in space. NASA’s Dawn mission uses ion propulsion, as do several other missions from Japan and the ESA.

How long it will be before the technology could be used to help humans travel extremely long distances, however, remains to be seen.

In short, it seems unlikely that a solution that would require breaking every law in the physics book will be the one that gets us there. As fun as wormholes feel from the outside, they’re probably not worth too much of our focus.

A new ‘Einstein’ equation suggests wormholes hold key to quantum gravity


There’s a new equation floating around the world of physics these days that would make Einstein proud.

illustration of a wormhole

Wormholes, tunnels through the fabric of spacetime that connect widely separated locations, are predicted by Einstein’s general theory of relativity. Some physicists think that wormholes could connect black holes in space, possibly providing a clue to the mysteries of quantum entanglement and how to merge general relativity with quantum mechanics.

It’s pretty easy to remember: ER=EPR.

You might suspect that to make this equation work, P must be equal to 1. But the symbols in this equation stand not for numbers, but for names. E, you probably guessed, stands for Einstein. R and P are initials — for collaborators on two of Einstein’s most intriguing papers. Combined in this equation, these letters express a possible path to reconciling Einstein’s general relativity with quantum mechanics.

Quantum mechanics and general relativity are both spectacularly successful theories. Both predict bizarre phenomena that defy traditional conceptions of reality. Yet when put to the test, nature always complies with each theory’s requirements. Since both theories describe nature so well, it’s hard to explain why they’ve resisted all efforts to mathematically merge them. Somehow, everybody believes, they must fit together in the end. But so far nature has kept the form of their connection a secret.

ER=EPR, however, suggests that key to their connection can be found in the spacetime tunnels known as wormholes. These tunnels, implied by Einstein’s general relativity, would be like subspace shortcuts physically linking distant locations. It seems that such tunnels may be the alter ego of the mysterious link between subatomic particles known as quantum entanglement.

For the last 90 years or so, physicists have pursued two main quantum issues separately: one, how to interpret the quantum math to make sense of its weirdness (such as entanglement), and two, how to marry quantum mechanics to gravity. It turns out, if ER=EPR is right, that both questions have the same answer: Quantum weirdness can be understood only if you understand its connection to gravity. Wormholes may forge that link.

Wormholes are technically known as Einstein-Rosen bridges (the “ER” part of the equation). Nathan Rosen collaborated with Einstein on a paper describing them in 1935. EPR refers to another paper Einstein published with Rosen in 1935, along with Boris Podolsky. That one articulated quantum entanglement’s paradoxical puzzles about the nature of reality. For decades nobody seriously considered the possibility that the two papers had anything to do with one another. But in 2013, physicists Juan Maldacena and Leonard Susskind proposed that in some sense, wormholes and entanglement describe the same thing.

In a recent paper, Susskind has spelled out some of the implications of this realization. Among them: understanding the wormhole-entanglement equality could be the key to merging quantum mechanics and general relativity, that details of the merger would explain the mystery of entanglement, that spacetime itself could emerge from quantum entanglement, and that the controversies over how to interpret quantum mechanics could be resolved in the process.

“ER=EPR tells us that the immensely complicated network of entangled subsystems that comprises the universe is also an immensely complicated (and technically complex) network of Einstein-Rosen bridges,” Susskind writes. “To me it seems obvious that if ER=EPR is true it is a very big deal, and it must affect the foundations and interpretation of quantum mechanics.”

Entanglement poses one of the biggest impediments to understanding quantum physics. It happens, for instance, when two particles are emitted from a common source. A quantum description of such a particle pair tells you the odds that a measurement of one of the particles (say, its spin) will give a particular result (say, counterclockwise). But once one member of the pair has been measured, you instantly know what the result will be when you make the same measurement on the other, no matter how far away it is. Einstein balked at this realization, insisting that a measurement at one place could not affect a distant experiment (invoking his famous condemnation of “spooky action at a distance”). But many actual experiments have confirmed entanglement’s power to defy Einstein’s preference. Even though (as Einstein insisted) no information can be sent instantaneously from one particle to another, one of them nevertheless seems to “know” what happened to its entangled partner.

Ordinarily, physicists speak of entanglement between two particles. But that’s just the simplest example. Susskind points out that quantum fields — the stuff that particles are made from — can also be entangled. “In the vacuum of a quantum field theory the quantum fields in disjoint regions of space are entangled,” he writes. It has to do with the well-known (if bizarre) appearance of “virtual” particles that constantly pop in and out of existence in the vacuum. These particles appear in pairs literally out of nowhere; their common origin ensures that they are entangled. In their brief lifetimes they sometimes collide with real particles, which then become entangled themselves.

Now suppose Alice and Bob, universally acknowledged to be the most capable quantum experimenters ever imagined, start collecting these real entangled particles in the vacuum. Alice takes one member of each pair and Bob takes the other. They fly away separately to distant realms of space and then each smushes their particles so densely that they become a black hole. Because of the entanglement these particles started with, Alice and Bob have now created two entangled black holes. If ER=EPR is right, a wormhole will link those black holes; entanglement, therefore, can be described using the geometry of wormholes. “This is a remarkable claim whose impact has yet to be appreciated,” Susskind writes.

Even more remarkable, he suggests, is the possibility that two entangled subatomic particles alone are themselves somehow connected by a sort of quantum wormhole. Since wormholes are contortions of spacetime geometry — described by Einstein’s gravitational equations — identifying them with quantum entanglement would forge a link between gravity and quantum mechanics.

In any event, these developments certainly emphasize the importance of entanglement for understanding reality. In particular, ER=EPR illuminates the contentious debates about how quantum mechanics should be interpreted. Standard quantum wisdom (the Copenhagen interpretation) emphasizes the role of an observer, who when making a measurement “collapses” multiple quantum possibilities into one definite result. But the competing Everett (or “many worlds”) interpretation says that the multiple possibilities all occur — any observer just happens to experience only one consistent branching chain of the multiple possible events.

In the Everett picture, collapse of the cloud of possibilities (the wave function) never happens. Interactions (that is, measurements) just cause the interacting entities to become entangled. Reality, then, becomes “a complicated network of entanglements.” In principle, all those entangling events could be reversed, so nothing ever actually collapses — or at least it would be misleading to say that the collapse is irreversible. Still, the standard view of irreversible collapse works pretty well in practice. It’s never feasible to undo the multitude of complex interactions that occur in real life. In other words, Susskind says, ER=EPR suggests that the two views of quantum reality are “complementary.”

Susskind goes on to explore in technical detail how entanglement functions with multiple participants and describes the implications for considering entanglement to be equivalent to a wormhole. It remains certain, for instance, that wormholes cannot be used to send a signal through space faster than light. Alice and Bob cannot, for instance, send messages to each other through the wormhole connecting their black holes. If they really want to talk, though, they could each jump into their black hole and meet in the middle of the wormhole. Such a meeting would provide strong confirmation for the ER=EPR idea, although Alice and Bob would have trouble getting their paper about it published.

In the meantime, a great many papers are appearing about ER=EPR and other work relating gravity — the geometry of spacetime — to quantum entanglement. In one recent paper, Caltech physicists ChunJun Cao, Sean M. Carroll and Spyridon Michalakis attempt to show how spacetime can be “built” from the vast network of quantum entanglement in the vacuum. “In this paper we take steps toward deriving the existence and properties of space itself from an intrinsically quantum description using entanglement,” they write. They show how changes in “quantum states” — the purely quantum descriptions of reality — can be linked to changes in spacetime geometry. “In this sense,” they say, “gravity appears to arise from quantum mechanics in a natural way.”

Cao, Carroll and Michalakis acknowledge that their approach remains incomplete, containing assumptions that will need to be verified later. “What we’ve done here is extremely preliminary and conjectural,” Carroll writes in a recent blog post. “We don’t have a full theory of anything, and even what we do have involves a great deal of speculating and not yet enough rigorous calculating.”

Nevertheless there is a clear sense among many physicists that a path to unifying quantum mechanics and gravity has apparently opened. If it’s the right path, Carroll notes, then it turns out not at all to be hard to get gravity from quantum mechanics — it’s “automatic.” And Susskind believes that the path to quantum gravity — through the wormhole — demonstrates that the unity of the two theories is deeper than scientists suspected. The implication of ER=EPR, he says, is that “quantum mechanics and gravity are far more tightly related than we (or at least I) had ever imagined.”

This new equation might finally unite the two biggest theories in physics, physicist claims.


Linking general relativity and quantum mechanics with wormholes.

One of the most stubborn problems in physics today is the fact that our two best theories to explain the Universe – general relativity and quantum mechanics – function perfectly well on their own, but as soon as you try to combine them, the maths just doesn’t work out.

But a Stanford theoretical physicist has just come up with a new equation that suggests the key to finally connecting the two could be found in bizarre spacetime tunnels called wormholes.

The equation is deceptively simple: ER = EPR.

It’s not made up of numerical values, but instead represents the names of some key players in theoretical physics.

On the left side of the equation, the ER stands for Einstein and Nathan Rosen,and refers to a 1935 paper they wrote together describing wormholes, known technically as Einstein-Rosen bridges.

On the right side of the equation, EPR stands for Einstein, Rosen and Boris Podolsky, who co-wrote another paper that year describing quantum entanglement.

Back in 2013, physicist Leonard Susskind from Stanford University and Juan Maldacena from the Institute for Advance Study at Princeton suggested that the two papers could be describing pretty much the same thing – something that no one else in the field had previously considered, including Einstein himself.

Now Susskind is back to discuss the implications if he’s in fact right.

But first, let’s look at the individual parts of this equation.

First implied by Einstein’s theory of general relativity, wormholes are like tunnels between two places in the Universe.

In theory, if you fell in one side of a wormhole, you’d appear on the other side almost instantaneously, even if it happened to be on the exact opposite side of the Universe.

But wormholes aren’t just portals to another place in the Universe, they’re portals between two times in the Universe. Like Carl Sagan once said, “You might emerge somewhere else in space, some when-else in time.”

Quantum entanglement, on the other hand, describes the way that two particles can interact in such a way that they become inexorably linked, and essentially ‘share’ an existence.

This means that whatever happens to one particle will directly and instantaneously affect the other – even if it’s light-years away.

Okay, now let’s combine the two.

In his new paper, Susskind proposes a scenario where hypothetical Alice and Bob each take a bunch of entangled particles – Alice takes one member of each pair, and Bob takes the other, and they fly off in opposite directions of the Universe in their hypothetical hypersonic jets.

Once in their separate positions, Alice and Bob smash their particles together with such great force, they create two separate black holes.

The result, says Susskind, is two entangled black holes on opposite sides of the Universe, linked in the middle by a giant wormhole.

“If ER = EPR is right, a wormhole will link those black holes; entanglement, therefore, can be described using the geometry of wormholes,” says Tom Siegfried over at Science News.

“Even more remarkable … is the possibility that two entangled subatomic particles alone are themselves somehow connected by a sort of quantum wormhole,” Siegfried adds.

“Since wormholes are contortions of spacetime geometry – described by Einstein’s gravitational equations – identifying them with quantum entanglement would forge a link between gravity and quantum mechanics.”

Is Susskind right? It’s impossible to say just yet, because while he’s published his paper on pre-press website arXiv.org to be openly scrutinised by his peers, it’s yet to go through the formal peer-review process.

But, as Siegfried reports, Susskind isn’t the only one going down this path. Earlier this year, a team of Caltech physicists came up with a similar hypothesis when they attempted to show how changes in quantum states can be linked to curves in spacetime geometry.

In a blog post describing the hypothesis, one of the team, Sean M. Carroll, says the most natural relationship between energy and spacetime curvature in this scenario is given by Einstein’s equation for general relativity.

“The claim, in its most dramatic-sounding form, is that gravity (spacetime curvature caused by energy/momentum) isn’t hard to obtain in quantum mechanics – it’s automatic! Or at least, the most natural thing to expect,” he says.

We’ll have to wait and see if ER = EPR or something closely related bears out, but it’s certainly food for thought, and Susskind for one thinks he’s on to something here.

“To me it seems obvious that if ER = EPR is true, it is a very big deal, and it must affect the foundations and interpretation of quantum mechanics,” he writes, adding that if he’s right, “quantum mechanics and gravity are far more tightly related than we (or at least I) had ever imagined”.

A new ‘Einstein’ equation suggests wormholes hold key to quantum gravity 


There’s a new equation floating around the world of physics these days that would make Einstein proud.

illustration of a wormhole

Wormholes, tunnels through the fabric of spacetime that connect widely separated locations, are predicted by Einstein’s general theory of relativity. Some physicists think that wormholes could connect black holes in space, possibly providing a clue to the mysteries of quantum entanglement and how to merge general relativity with quantum mechanics.

It’s pretty easy to remember: ER=EPR.

You might suspect that to make this equation work, P must be equal to 1. But the symbols in this equation stand not for numbers, but for names. E, you probably guessed, stands for Einstein. R and P are initials — for collaborators on two of Einstein’s most intriguing papers. Combined in this equation, these letters express a possible path to reconciling Einstein’s general relativity with quantum mechanics.

Quantum mechanics and general relativity are both spectacularly successful theories. Both predict bizarre phenomena that defy traditional conceptions of reality. Yet when put to the test, nature always complies with each theory’s requirements. Since both theories describe nature so well, it’s hard to explain why they’ve resisted all efforts to mathematically merge them. Somehow, everybody believes, they must fit together in the end. But so far nature has kept the form of their connection a secret.

ER=EPR, however, suggests that key to their connection can be found in the spacetime tunnels known as wormholes. These tunnels, implied by Einstein’s general relativity, would be like subspace shortcuts physically linking distant locations. It seems that such tunnels may be the alter ego of the mysterious link between subatomic particles known as quantum entanglement.

For the last 90 years or so, physicists have pursued two main quantum issues separately: one, how to interpret the quantum math to make sense of its weirdness (such as entanglement), and two, how to marry quantum mechanics to gravity. It turns out, if ER=EPR is right, that both questions have the same answer: Quantum weirdness can be understood only if you understand its connection to gravity. Wormholes may forge that link.

Wormholes are technically known as Einstein-Rosen bridges (the “ER” part of the equation). Nathan Rosen collaborated with Einstein on a paper describing them in 1935. EPR refers to another paper Einstein published with Rosen in 1935, along with Boris Podolsky. That one articulated quantum entanglement’s paradoxical puzzles about the nature of reality. For decades nobody seriously considered the possibility that the two papers had anything to do with one another. But in 2013, physicists Juan Maldacena and Leonard Susskind proposed that in some sense, wormholes and entanglement describe the same thing.

In a recent paper, Susskind has spelled out some of the implications of this realization. Among them: understanding the wormhole-entanglement equality could be the key to merging quantum mechanics and general relativity, that details of the merger would explain the mystery of entanglement, that spacetime itself could emerge from quantum entanglement, and that the controversies over how to interpret quantum mechanics could be resolved in the process.

“ER=EPR tells us that the immensely complicated network of entangled subsystems that comprises the universe is also an immensely complicated (and technically complex) network of Einstein-Rosen bridges,” Susskind writes. “To me it seems obvious that if ER=EPR is true it is a very big deal, and it must affect the foundations and interpretation of quantum mechanics.”

Entanglement poses one of the biggest impediments to understanding quantum physics. It happens, for instance, when two particles are emitted from a common source. A quantum description of such a particle pair tells you the odds that a measurement of one of the particles (say, its spin) will give a particular result (say, counterclockwise). But once one member of the pair has been measured, you instantly know what the result will be when you make the same measurement on the other, no matter how far away it is. Einstein balked at this realization, insisting that a measurement at one place could not affect a distant experiment (invoking his famous condemnation of “spooky action at a distance”). But many actual experiments have confirmed entanglement’s power to defy Einstein’s preference. Even though (as Einstein insisted) no information can be sent instantaneously from one particle to another, one of them nevertheless seems to “know” what happened to its entangled partner.

Ordinarily, physicists speak of entanglement between two particles. But that’s just the simplest example. Susskind points out that quantum fields — the stuff that particles are made from — can also be entangled. “In the vacuum of a quantum field theory the quantum fields in disjoint regions of space are entangled,” he writes. It has to do with the well-known (if bizarre) appearance of “virtual” particles that constantly pop in and out of existence in the vacuum. These particles appear in pairs literally out of nowhere; their common origin ensures that they are entangled. In their brief lifetimes they sometimes collide with real particles, which then become entangled themselves.

Now suppose Alice and Bob, universally acknowledged to be the most capable quantum experimenters ever imagined, start collecting these real entangled particles in the vacuum. Alice takes one member of each pair and Bob takes the other. They fly away separately to distant realms of space and then each smushes their particles so densely that they become a black hole. Because of the entanglement these particles started with, Alice and Bob have now created two entangled black holes. If ER=EPR is right, a wormhole will link those black holes; entanglement, therefore, can be described using the geometry of wormholes. “This is a remarkable claim whose impact has yet to be appreciated,” Susskind writes.

Even more remarkable, he suggests, is the possibility that two entangled subatomic particles alone are themselves somehow connected by a sort of quantum wormhole. Since wormholes are contortions of spacetime geometry — described by Einstein’s gravitational equations — identifying them with quantum entanglement would forge a link between gravity and quantum mechanics.

In any event, these developments certainly emphasize the importance of entanglement for understanding reality. In particular, ER=EPR illuminates the contentious debates about how quantum mechanics should be interpreted. Standard quantum wisdom (the Copenhagen interpretation) emphasizes the role of an observer, who when making a measurement “collapses” multiple quantum possibilities into one definite result. But the competing Everett (or “many worlds”) interpretation says that the multiple possibilities all occur — any observer just happens to experience only one consistent branching chain of the multiple possible events.

In the Everett picture, collapse of the cloud of possibilities (the wave function) never happens. Interactions (that is, measurements) just cause the interacting entities to become entangled. Reality, then, becomes “a complicated network of entanglements.” In principle, all those entangling events could be reversed, so nothing ever actually collapses — or at least it would be misleading to say that the collapse is irreversible. Still, the standard view of irreversible collapse works pretty well in practice. It’s never feasible to undo the multitude of complex interactions that occur in real life. In other words, Susskind says, ER=EPR suggests that the two views of quantum reality are “complementary.”

Susskind goes on to explore in technical detail how entanglement functions with multiple participants and describes the implications for considering entanglement to be equivalent to a wormhole. It remains certain, for instance, that wormholes cannot be used to send a signal through space faster than light. Alice and Bob cannot, for instance, send messages to each other through the wormhole connecting their black holes. If they really want to talk, though, they could each jump into their black hole and meet in the middle of the wormhole. Such a meeting would provide strong confirmation for the ER=EPR idea, although Alice and Bob would have trouble getting their paper about it published.

In the meantime, a great many papers are appearing about ER=EPR and other work relating gravity — the geometry of spacetime — to quantum entanglement. In one recent paper, Caltech physicists ChunJun Cao, Sean M. Carroll and Spyridon Michalakis attempt to show how spacetime can be “built” from the vast network of quantum entanglement in the vacuum. “In this paper we take steps toward deriving the existence and properties of space itself from an intrinsically quantum description using entanglement,” they write. They show how changes in “quantum states” — the purely quantum descriptions of reality — can be linked to changes in spacetime geometry. “In this sense,” they say, “gravity appears to arise from quantum mechanics in a natural way.”

Cao, Carroll and Michalakis acknowledge that their approach remains incomplete, containing assumptions that will need to be verified later. “What we’ve done here is extremely preliminary and conjectural,” Carroll writes in a recent blog post. “We don’t have a full theory of anything, and even what we do have involves a great deal of speculating and not yet enough rigorous calculating.”

Nevertheless there is a clear sense among many physicists that a path to unifying quantum mechanics and gravity has apparently opened. If it’s the right path, Carroll notes, then it turns out not at all to be hard to get gravity from quantum mechanics — it’s “automatic.” And Susskind believes that the path to quantum gravity — through the wormhole — demonstrates that the unity of the two theories is deeper than scientists suspected. The implication of ER=EPR, he says, is that “quantum mechanics and gravity are far more tightly related than we (or at least I) had ever imagined.”

Believe it or not! Scientists created Wormholes! Distant galaxies will be nearer soon!


Wormholes have been an evergreen topic of interest among sci-fi fans. The discoveries of wrinkles in the fabric of space and time, that can warp the two dimension to transport a body instantaneously to an alternate universe. Well, don’t get too excited; it’s all still very theoretical. What has actually been made by scientists, is a wormhole for magnets, which transports magnetic fields through space. The transaction of the magnet will occur without being visible from the outside.

wormhole-lab-660x330

“From a magnetic point of view, this device acts like a wormhole, as if the magnetic field was transferred through an extra special dimension,” lead study author Jordi Prat-Camps of the Autonomous University of Barcelona in Spain told Live Science.

The wormhole device contains an interior spiral of ferromagnetic metal, surrounded by two concentric spheres. The ferromagnet takes care of the magnetic field lines from one end to the other. A shell of yttrium barium copper oxide (a superconducting material, yellow) bends and distorts the magnetic field lines as they travel.

9-5

The outer shell composed of “mu-metals” (used for shielding electronic devices, silver) perfectly cancels out the magnetic distortion of the superconductor, rendering the entire thing “magnetically invisible” from the outside.
This creation is necessary as it could greatly improve the MRI scans we currently use. A strong magnet could take someone’s picture from very far away.