Social Symptoms In Autistic Children Could Be Caused By Hyper-connected Neurons.


The brains of children with autism show more connections than the brains of typically developing children do. What’s more, the brains of individuals with the most severe social symptoms are also the most hyper-connected. The findings reported in two independent studies published in the Cell Press journal Cell Reports on November 7th are challenge the prevailing notion in the field that autistic brains are lacking in neural connections.

The findings could lead to new treatment strategies and new ways to detect autism early, the researchers say. Autism spectrum disorder is a neurodevelopmental condition affecting nearly 1 in 88 children.

“Our study addresses one of the hottest open questions in autism research,” said Kaustubh Supekar of Stanford University School of Medicine of his and his colleague Vinod Menon’s study aimed at characterizing whole-brain connectivity in children. “Using one of the largest and most heterogeneous pediatric functional neuroimaging datasets to date, we demonstrate that the brains of children with autism are hyper-connected in ways that are related to the severity of social impairment exhibited by these children.”

In the second Cell Reports study, Ralph-Axel Müller and colleagues at San Diego State University focused specifically on neighboring brain regions to find an atypical increase in connections in adolescents with a diagnosis of autism spectrum disorder. That over-connection, which his team observed particularly in the regions of the brain that control vision, was also linked to symptom severity.

“Our findings support the special status of the visual system in children with heavier symptom load,” Müller said, noting that all of the participants in his study were considered “high-functioning” with IQs above 70. He says measures of local connectivity in the cortex might be used as an aid to diagnosis, which today is based purely on behavioral criteria.

For Supekar and Menon, these new views of the autistic brain raise the intriguing possibility that epilepsy drugs might be used to treat autism.

“Our findings suggest that the imbalance of excitation and inhibition in the local brain circuits could engender cognitive and behavioral deficits observed in autism,” Menon said. That imbalance is a hallmark of epilepsy as well, which might explain why children with autism so often suffer with epilepsy too.

“Drawing from these observations, it might not be too far fetched to speculate that the existing drugs used to treat epilepsy may be potentially useful in treating autism,” Supekar said.

Everything in moderation: excessive nerve cell pruning leads to disease.


Mechanism meant to maintain efficiency of brain network involved in neurodegenerative disease

Scientists at the Montreal Neurological Institute and Hospital-The Neuro, McGill University, have made important discoveries about a cellular process that occurs during normal brain development and may play an important role in neurodegenerative diseases. The study’s findings, published in Cell Reports, a leading scientific journal, point to new pathways and targets for novel therapies for Alzheimer’s, Parkinson’s, ALS and other neurodegenerative diseases that affect millions of people world-wide.

Research into neurodegenerative disease has traditionally concentrated on the death of nerve cell bodies. However, it is now certain that in most cases that nerve cell body death represents the final event of an extended disease process. Studies have shown that protecting cell bodies from death has no impact on disease progression whereas blocking preceding axon breakdown has a significant benefit.  The new study by researchers at The Neuro shifts the focus to the loss or degeneration of axons, the nerve-cell ‘branches’ that receive and distribute neurochemical signals among neurons.

During early development, axons are pruned to ensure normal growth of the nervous system. Emerging evidence suggests that this pruning process becomes reactivated in neurodegenerative disease, leading to the aberrant loss of axons and dendrites. Axonal pruning in development is significantly influenced by proteins called caspases. “The idea that caspases are even involved in axonal degeneration during development is very recent” said Dr. Philip Barker, a principal investigator at The Neuro and senior author of the study.

Dr. Barker and his colleagues show that the activity of certain ’executioner’ caspases (caspase-3 and caspase-9) induce axonal degeneration and that their action is suppressed by a protein termed XIAP (X-linked inhibitor of apoptosis). “We found that caspase-3- and -9 play crucial roles in axonal degeneration and that their activities are regulated by XIAP. XIAP acts as a brake on caspase activity and must be removed for degeneration to proceed” added Dr. Barker.

This balancing act between caspases and XIAP ensure that caspases do not cause unnecessary or excessive destruction. However, this balance may shift during neurodegenerative disease. “If we understand the pathways that regulate XIAP levels, we may be able to develop therapies that reduce caspase-dependent degeneration during neurodegenerative disease”.