The Strong Force Is What’s Holding The Universe Together


Particle physicists might seem like a dry bunch, but they have their fun. Why else would there be such a thing as a “strange quark”? When it comes to the fundamental nuclear forces, though, they don’t mess around: the strongest force in nature is known simply as the “strong force,” and it’s the force that literally holds existence together.

 

Zoom In On The Elementary Particles

 To find out what the strong force is, you need to have a basic understanding of what physicists call the elementary particles. Let’s start with an atom—helium, for example. A helium atom has two electrons zipping around a nucleus made up of two neutrons and two protons. For most high-school chemistry classes, that’s where the tiny particles end. But you can zoom even further into the atom: those protons and neutrons are a class of particle called hadrons (à la the Large Hadron Collider!), which are made up of even smaller particles called quarks. Quarks are what’s known as an elementary particle, since they can’t be split up any further. They’re as small as things get. There are two types of elementary particles; the other is the lepton. Quarks and leptons each have six “flavors”, and each of those have an antimatter version. (The electrons in our helium atom are a flavor of lepton, so we’re as zoomed in on them as is possible.) Heady stuff! Check out the diagram below if you’re getting lost.
The Standard Model

Forces Of Nature

 Following so far? There are four more parts to this puzzle we call the Standard Model, which is the theory of all theories when it comes to particle physics. Those parts are the fundamental forces. Two are probably familiar: gravity is the force between two particles that have mass, and electromagnetism is the force between two particles that have a charge. The two others are known as nuclear forces, and they’re less familiar because they only happen on the atomic scale. Those ones are known as the weak force and the strong force. The weak force operates between electrons and neutrinos (another kind of lepton), but of course, it’s the strong force we’re here to talk about.

The strong force is what binds quarks together to form hadrons like protons and neutrons. Physicists first conceived of this force’s existence to explain why an atom’s nucleus can have more than one positively charged proton and still stay together—if you’ve ever played with magnets, you know that a positive charge will always repel another positive charge. Eventually, they figured out that the strong force not only holds protons together in the nucleus, but it also holds quarks together in the protons themselves. The force actually comes from a type of force-carrier particle called a boson. (Surely you remember the 2012 discovery of the Higgs boson?) The particular boson that exerts this powerful force is called a “gluon”, since it “glues” the nucleus together (we told you that physicists were a fun bunch).

Here’s what makes the strong force so fascinating: unlike an electromagnetic force, which decreases as you pull the two charged particles apart (think of magnets again!), the strong force actually gets stronger the further apart the particles go. It gets so strong that it limits how far two quarks can separate. Once they hit that limit, that’s when the magic happens: the huge amount of energy it took for them to separate is converted to mass, following Einstein’s famous equation E = mc2. That’s right—the strongest force in the universe is strong enough to turn energy into matter, the thing that makes up existence as you know it. We learned some particle physics, everyone. Who needs a snack?

 

Watch And Learn: Videos About Particle Physics To Make You Sound Smart

The Four Fundamental Forces Of Physics Explained

Here they are, in all their glory!

Japanese Scientists Prove Teleportation is Possible.


The future is already here: for the first time in the world, a team of Japanese scientists managed to implement teleportation! A beam of light was moved from point A to point B. For the purpose of the experiment, Noriyuki Lee and his colleagues divided light into elementary particles – photons. They kept only one photon that carried the information about the rest beam.

This photon was entangled at the quantum level with another photon, which was located at point B. It turned out that these two photons instantaneously affected each other, being physically located in different places. Thanks to this phenomenon, the original beam was at the same moment recreated elsewhere using the information carried by the photon.

It is interesting that the possibility of quantum entanglement of elementary particles was suggested by Albert Einstein in 1935, but in that time even the physicist himself considered his theory absurd. However, subsequently physicists have proved that quantum entanglement exists, and already in our days some companies have created technology of secure communication channels on the basis of this phenomenon.

Furthermore, among other things, the phenomenon of quantum entanglement might be used as evidence for the existence of a plurality of parallel universes.

The Large Hadron Collider has observed two brand new particles.


Two never-before-seen “heavy-weight” baryon particles have been detected by the world’s favourite particle accelerator, the Large Hadron Collider. The discovery could help scientists understand more about the interactions of elementary particles.
Physicists from CERN in Geneva have discovered two new types of baryon particlesnamed Xi_b’- and Xi_b*- (before you ask, no, we’re not sure how to pronounce them).

Baryon particles are subatomic particles such as hyperons that are made up of three strongly-bonded tiny elementary particles called quarks – which are generally thought to be some of the smallest units of matter.

Xi_b’- and Xi_b*- were both predicted to already exist by the quantum physics models, but they’d never been seen before this and scientists weren’t sure of their exact mass – something they’ve now managed to calculate. And the heavy-weight subatomic particles impressively big – both are more than six times as massive as protons.

The new baryons were spotted in the Large Hadron Collider (LHC), the particle accelerator most famous for (probably) finding the Higgs boson.

The LHC works by accelerating two opposing beams of particles to speeds approaching the speed of light, and when they collide, they create an extremely hot explosion, which allows never-before-seen particles and types of matter to form very briefly.

In this split-second after-collision is when all the magic happens and physicists can find proof for things they’ve previously only ever hypothesised using formulae.

Just like baryons, protons are almost made of three tightly-bound quarks, but what’s particularly fascinating about Xi_b’- and Xi-b*- is that each of their quarks has a different spin, or direction in which they configure. Both subatomic particles contain one beauty quark (which accounts for most of their weight), one strange quark and one down quark.

As Nicholas St. Fleur explains for The Atlantic:

“The finding helps physicists narrow down the different ways that quarks can be arranged, which provides clues into understanding the forces that keep them and the most basic building blocks of matter held together”.

The results have been submitted to Physical Review Letters, but appear online now on ArXiv.

“There are maybe three-to-five such particles discovered each year,” Patrick Koppenburg, a CERN scientist from the Netherlands’ Nikhef Institute, told The Wall Street Journal. “Here we have two in one go, which is quite extraordinary.”

The researchers have also studied the relative production rates of the baryons, their widths – which can measure how unstable they are – as well as other details of their decay.

All of the results matched up with what they’d predicted of the baryons based on the theory of Quantum Chromodynamics (QCD).

QCD is part of the Standard Model of particle physics, which describes the forces that govern our Universe. Understanding more about the QCD will help refine our knowledge of the Standard Model and possibly even advance it one day.

“If we want to find new physics beyond the Standard Model, we need first to have a sharp picture,” said Patrick Koppenburg, the physics coordinator of the LHCb, the instrument that detected the baryons, in a press release. “Such high precision studies will help us to differentiate between Standard Model effects and anything new or unexpected in the future.”

Of course, particle discoveries are always pretty controversial. St. Fleur reports for The Atlantic:

“In 2011, a collaboration between CERN and the Italian OPERA experiment announced finding faster-than-light neutrinos, a discovery that was later undone after further investigation, as ScienceInsider reported in 2012. Even now, some physicists still debate whether or not physicists actually found the Higgs Boson.”

But although it will take some more peer-reviewed research for the discovery to become widely accepted, it’s still a pretty exciting first step.

“This is a very exciting result. Thanks to LHCb’s excellent hadron identification, which is unique among the LHC experiments, we were able to separate a very clean and strong signal from the background,” said Steven Blusk from Syracuse University in New York, who wasn’t involved in the research, in the CERN press release. “It demonstrates once again the sensitivity and how precise the LHCb detector is.”