Be Kind – What Goes Around Comes Back Around.


Three things in human life are important: the first is to be kind; the second is to be kind; and the third is to be kind. ~Henry James

The Chain of Love

“One day a man saw an old lady, stranded on the side of the road, but even In the dim light of day, he could see she needed help. So he pulled up in front of her Mercedes and got out. His Pontiac was still sputtering when he approached her. Even with the smile on his face, she was worried. No one had stopped to help for the last hour or so. Was he going to hurt her? He didn’t look safe; he looked poor and hungry.

He could see that she was frightened, standing out there in the cold. He knew how she felt. It was that chill which only fear can put in you. He said, ‘I’m here to help you, ma’am. Why don’t you wait in the car where it’s warm? By the way, my name is Bryan Anderson.’ Well, all she had was a flat tire, but for an old lady, that was bad enough. Bryan crawled under the car looking for a place to putthe jack, skinning his knuckles a time or two.

Soon he was able to change the tire.But he had to get dirty and his hands hurt. As he was tightening up the lug nuts, she rolled down the window and began to talk to him. She told him that she was from St. Louis and was only just passing through. She couldn’t thank him enough for coming to her aid. Bryan just smiled as he closed her trunk. The lady asked how much she owed him. Any amount would have been all right with her.

She already imagined all the awful things that could have happened had he not stopped. Bryan never thought twice about being paid. This was not a job to him. This was helping someone in need, and God knows there were plenty, who had given him a hand in the past. He told her that if she really wanted to pay him back, the next time she saw someone who needed help, she could give that person the assistance they needed, and Bryan added, ‘And think of me.’ He waited until she started her car and drove off.

It had been a cold and depressing day, but he felt good as he headed for home, disappearing into the twilight. A few miles down the road the lady saw a small cafe. She went in to grab a bite to eat, and take the chill off before she made the last leg of her trip home. It was a dingy looking restaurant. Outside were two old gas pumps. The waitress came over and brought a clean towel to wipe her wet hair.She had a sweet smile, one that even being on her feet for the whole day couldn’t erase. The lady noticed that the waitress was nearly eight months pregnant, but she never let the strain and aches change her attitude. The old lady wondered how someone who had so little could be so giving to a stranger. Then she remembered Bryan .. After the lady finished her meal, she paid with a hundred dollar bill.

The waitress quickly went to get change for her hundred dollar bill, but the old lady had slipped right out the door. She was gone by the time the waitress came back. The waitress wondered where the lady could be. Then she noticed something written on the napkin.There were tears in her eyes when she read what the lady wrote: ‘You don’t owe me anything. I have been there too. Somebody once helped me out, the way I’m helping you. If you really want to pay me back, here is what you do: Do not let this chain of love end with you.’

Under the napkin were 4 more $100 bills. Well, there were tables to clear, sugar bowls to fill, and people tos erve, but the waitress made it through another day. That night when she got home from work and climbed into bed, she was thinking about the money and what the lady had written. How could the lady have known how much she and her husband needed it?

Be kind, for everyone you meet is fighting a harder battle. ~Plato

With the baby due next month, it was going to be hard…. She knew how worried her husband was, and as he lay sleeping next to her, she gave him a soft kiss and whispered soft and low, ‘Everything’s going to be all right. I love you, Bryan Anderson.’”

Does this story mean anything to you apart from it just being another proverb? Well, I’d say it’s a reality. Try it out once. Afterall, miracles do happen! Hope the following story changes your outlook towards life (It did for me!). Keep shining

This beautiful story began as a story that appeared in the Chicken Soup for the Country Soul book in 1996, written by Jonnie Barnett and Rory Lee and it was shared with you by one of our readers- Manvita Gandhi.

Scientists identify clue to regrowing nerve cells.


Researchers atWashington University School of Medicine in St. Louis have identified a chain reaction that triggers the regrowth of some damaged nerve cell branches, a discovery that one day may help improve treatments for nerve injuries that can cause loss of sensation or paralysis. 

The scientists also showed that nerve cells in the brain and spinal cord are missing a link in this chain reaction. The link, a protein called HDAC5, may help explain why these cells are unlikely to regrow lost branches on their own. The new research suggests that activating HDAC5 in the central nervous system may turn on regeneration of nerve cell branches in this region, where injuries often cause lasting paralysis. 

Nerve cells with branches

“We knew several genes that contribute to the regrowth of these nerve cell branches, which are called axons, but until now we didn’t know what activated the expression of these genes and, hence, the repair process,” said senior author Valeria Cavalli, PhD, assistant professor of neurobiology. “This puts us a step closer to one day being able to develop treatments that enhance axon regrowth.” 

The research appears Nov. 7 in the journal Cell.

Axons are the branches of nerve cells that send messages. They typically are much longer and more vulnerable to injury than dendrites, the branches that receive messages. 

In the peripheral nervous system — the network of nerve cells outside the brain and spinal column — cells sometimes naturally regenerate damaged axons. But in the central nervous system, comprised of the brain and spinal cord, injured nerve cells typically do not replace lost axons. 

Working with peripheral nervous system cells grown in the laboratory, Yongcheol Cho, PhD, a postdoctoral research associate in Cavalli’s laboratory, severed the cells’ axons. He and his colleagues learned that this causes a surge of calcium to travel backward along the axon to the body of the cell. The surge is the first step in a series of reactions that activate axon repair mechanisms. 

In peripheral nerve cells, one of the most important steps in this chain reaction is the release of a protein, HDAC5, from the cell nucleus, the central compartment where DNA is kept. The researchers learned that after leaving the nucleus, HDAC5 turns on a number of genes involved in the regrowth process. HDAC5 also travels to the site of the injury to assist in the creation of microtubules, rigid tubes that act as support structures for the cell and help establish the structure of the replacement axon.

When the researchers genetically modified the HDAC5 gene to keep its protein trapped in the nuclei of peripheral nerve cells, axons did not regenerate in cell cultures. The scientists also showed they could encourage axon regrowth in cell cultures and in animals by dosing the cells with drugs that made it easier for HDAC5 to leave the nucleus.

When the scientists looked for the same chain reaction in central nervous system cells, they found that HDAC5 never left the nuclei of the cells and did not travel to the site of the injury. They believe that failure to get this essential player out of the nucleus may be one of the most important reasons why central nervous system cells do not regenerate axons.

“This gives us the hope that if we can find ways to manipulate this system in brain and spinal cord neurons, we can help the cells of the central nervous system regrow lost branches,” Cavalli said. “We’re working on that now.”

Cavalli also is collaborating with Susan Mackinnon, MD, the Sydney M. Shoenberg Jr. and Robert H. Shoenberg Professor of Surgery, chief of the Division of Plastic and Reconstructive Surgery and a pioneer in peripheral nerve transplants. The two are investigating whether HDAC5 or other components of the chain reaction can be used to help restore sensory functions in nerve grafts.

 

Childhood Poverty Linked to Poor Brain Development.


Exposure to poverty in early childhood negatively affects brain development, but good-quality caregiving may help offset this effect, new research suggests.

A longitudinal imaging study shows that young children exposed to poverty have smaller white and cortical gray matter as well as hippocampal and amygdala volumes, as measured during school age and early adolescence.

“These findings extend the substantial body of behavioral data demonstrating the deleterious effects of poverty on child developmental outcomes into the neurodevelopmental domain and are consistent with prior results,” the investigators, with lead author Joan Luby, MD, Washington University School of Medicine in St. Louis, Missouri, write.

However, the investigators also found that the effects of poverty on hippocampal volume were influenced by caregiving and stressful life events.

The study was published online October 28 in JAMA Pediatrics.

Powerful Risk Factor

Poverty is one of the most powerful risk factors for poor developmental outcomes; a large body of research shows that children exposed to poverty have poorer cognitive outcomes and school performance and are at greater risk for antisocial behaviors and mental disorders.

However, the researchers note, there are few neurobiological data in humans to inform the mechanism of these relationships.

“This represents a critical gap in the literature and an urgent national and global public health problem based on statistics that more than 1 in 5 children are now living below the poverty line in the United States alone,” the authors write.

To examine the effects of poverty on childhood brain development and to understand what factors might mediate its negative impact, the researchers used magnetic resonance imaging (MRI) to examine total white and cortical gray matter as well as hippocampal and amygdala volumes in 145 children aged 6 to 12 years who had been followed since preschool.

The researchers looked at caregiver support/hostility, measured observationally during the preschool period, and stressful life events, measured prospectively.

The children underwent annual behavioral assessments for 3 to 6 years prior to MRI scanning and were annually assessed for 5 to 10 years following brain imaging.

Household poverty was measured using the federal income-to-needs ratio.

“Toxic” Effect

The researchers found that poverty was associated with lower hippocampal volumes, but they also found that caregiving behaviors and stressful life events could fully mediate this negative effect.

“The finding that the effects of poverty on hippocampal development are mediated through caregiving and stressful life events further underscores the importance of high-quality early childhood caregiving, a task that can be achieved through parenting education and support, as well as through preschool programs that provide high-quality supplementary caregiving and safe haven to vulnerable young children,” the investigators write.

In an accompanying editorial, Charles A. Nelson, PhD, Boston Children’s Hospital and Harvard Medical School, in Massachusetts, notes that the findings show that early experience “weaves its way into the neural and biological infrastructure of the child in such a way as to impact development trajectories and outcomes.”

“Exposure to early life adversity should be considered no less toxic than exposure to lead, alcohol or cocaine, and, as such it merits similar attention from health authorities,” Dr. Nelson writes.

Missouri Offers Free Vaccinations for Whooping Cough.


What do you do when you are offered something free? If you’re like most people, you accept it, oftentimes when it’s something you will never use or don’t even like. So, when a state offers free vaccines, those with limited knowledge of their negative effects may begin lining up. Unfortunately, flu season is approaching, so millions will line up for this questionable anti-flu solution.

That’s the concern of Michelle Goldstein at VacTruth.com. Goldstein reports on a recent incidence in Missouri, where state officials launched a propaganda campaign aimed at vaccinating as many in the state as possible, by offering free Tdap vaccines in the St. Louis area.

The “giveaway” was recently announced in St. Louis, where the paper announced that incidence of whooping cough have risen to levels not seen since 1955, due in part because vaccinations given more than 10 years ago were wearing off. Last year, more than 41,000 cases of pertussis were reported nationwide; this is in contrast to 18,719 cases the year before.

vaccine_fast-263x164

While St. Louis Today and the Missouri Department of Health are quick to point out all of the scary effects of whooping cough, they neglect to discuss the scary effects of the Tdap vaccine and the fact that pertussis can be effectively treated without conventional pharmaceutical means.

According to Goldstein:

“Health consequences resulting from the Tdap vaccine include encephalitis, brain damage and death. A comprehensive report made by the National Vaccine Information Center (NVIC) documents clearly the widespread health dangers associated with the Tdap vaccine. Tdap and DTap vaccines are currently used in the United States, replacing the DTP vaccine in 1996, but all three vaccines contain the dangerous pertussis toxin with unsafe additives.”

Exposing the Vaccination-Immunity Fraud

Also interesting, most of those who have recently contracted pertussis were actually vaccinated at some point. In other words, while there is solid proof of the vaccinations causing harm, there is no solid evidence that it can definitively prevent the disease.

In addition, whopping cough can be treated without prescription drugs. As a matter of fact, a successful bout of pertussis means lifelong immunity. In other words, once you have it you won’t get it again. What’s the most effective treatment for whooping cough? A vitamin C protocol that can dramatically reduce symptoms and complications.

Finally, the other conditions this Tdap vaccine “protects” against—tetanus and diphtheria—are not only uncommon in the U.S., but can similarly be prevented and treated with risk of complications being relatively low.

Since whooping cough can be problematic for young children, it’s important to do whatever you think is best as a parent; it’s just important to know truths behind the chosen solution.

A Hard Look at 3 Myths about Genetically Modified Crops.


gm

Superweeds? Suicides? Stealthy genes? The true, the false and the still unknown about transgenic crops

In the pitched debate over genetically modified (GM) foods and crops, it can be hard to see where scientific evidence ends and dogma and speculation begin. In the nearly 20 years since they were first commercialized, GM crop technologies have seen dramatic uptake. Advocates say that they have increased agricultural production by more than US$98 billion and saved an estimated 473 million kilograms of pesticides from being sprayed. But critics question their environmental, social and economic impacts.

Researchers, farmers, activists and GM seed companies all stridently promote their views, but the scientific data are often inconclusive or contradictory. Complicated truths have long been obscured by the fierce rhetoric. “I find it frustrating that the debate has not moved on,” says Dominic Glover, an agricultural socioeconomist at Wageningen University and Research Center in the Netherlands. “The two sides speak different languages and have different opinions on what evidence and issues matter,” he says.

Here, Nature takes a look at three pressing questions: are GM crops fuelling the rise of herbicide-resistant ‘superweeds’? Are they driving farmers in India to suicide? And are the foreign transgenes in GM crops spreading into other plants? These controversial case studies show how blame shifts, myths are spread and cultural insensitivities can inflame debate.

GM crops have bred superweeds: True
Jay Holder, a farming consultant in Ashburn, Georgia, first noticed Palmer amaranth (Amaranthus palmeri) in a client’s transgenic cotton fields about five years ago. Palmer amaranth is a particular pain for farmers in the southeastern United States, where it outcompetes cotton for moisture, light and soil nutrients and can quickly take over fields.

Since the late 1990s, US farmers had widely adopted GM cotton engineered to tolerate the herbicide glyphosate, which is marketed as Roundup by Monsanto in St Louis, Missouri. The herbicide–crop combination worked spectacularly well — until it didn’t. In 2004, herbicide-resistant amaranth was found in one county in Georgia; by 2011, it had spread to 76. “It got to the point where some farmers were losing half their cotton fields to the weed,” says Holder.

Some scientists and anti-GM groups warned that GM crops, by encouraging liberal use of glyphosate, were spurring the evolution of herbicide resistance in many weeds. Twenty-four glyphosate-resistant weed species have been identified since Roundup-tolerant crops were introduced in 1996. But herbicide resistance is a problem for farmers regardless of whether they plant GM crops. Some 64 weed species are resistant to the herbicide atrazine, for example, and no crops have been genetically modified to withstand it (see ‘The rise of superweeds’).

Still, glyphosate-tolerant plants could be considered victims of their own success. Farmers had historically used multiple herbicides, which slowed the development of resistance. They also controlled weeds through ploughing and tilling — practices that deplete topsoil and release carbon dioxide, but do not encourage resistance. The GM crops allowed growers to rely almost entirely on glyphosate, which is less toxic than many other chemicals and kills a broad range of weeds without ploughing. Farmers planted them year after year without rotating crop types or varying chemicals to deter resistance.

This strategy was supported by claims from Monsanto that glyphosate resistance was unlikely to develop naturally in weeds when the herbicide was used properly. As late as 2004, the company was publicizing a multi-year study suggesting that rotating crops and chemicals does not help to avert resistance. When applied at Monsanto’s recommended doses, glyphosate killed weeds effectively, and “we know that dead weeds will not become resistant”, said Rick Cole, now Monsanto’s technical lead of weed management, in a trade-journal advertisement at the time. The study, published in 2007, was criticized by scientists for using plots so small that the chances of resistance developing were very low, no matter what the practice.

Glyphosate-resistant weeds have now been found in 18 countries worldwide, with significant impacts in Brazil, Australia, Argentina and Paraguay, says Ian Heap, director of the International Survey of Herbicide Resistant Weeds, based in Corvallis, Oregon. And Monsanto has changed its stance on glyphosate use, now recommending that farmers use a mix of chemical products and ploughing. But the company stops short of acknowledging a role in creating the problem. “Over-confidence in the system combined with economic drivers led to reduced diversity in herbicide use,” Cole tellsNature.

On balance, herbicide-resistant GM crops are less damaging to the environment than conventional crops grown at industrial scale. A study by PG Economics, a consulting firm in Dorchester, UK, found that the introduction of herbicide-tolerant cotton saved 15.5 million kilograms of herbicide between 1996 and 2011, a 6.1% reduction from what would have been used on conventional cotton. And GM crop technology delivered an 8.9% improvement to the environmental impact quotient — a measure that considers factors such as pesticide toxicity to wildlife — says Graham Brookes, co-director of PG Economics and a co-author of the industry-funded study, which many scientists consider to be among the field’s most extensive and authoritative assessments of environmental impacts.

The question is how much longer those benefits will last. So far, farmers have dealt with the proliferation of resistant weeds by using more glyphosate, supplementing it with other herbicides and ploughing. A study by David Mortensen, a plant ecologist at Pennsylvania State University in University Park, predicts that total herbicide use in the United States will rise from around 1.5 kilograms per hectare in 2013 to more than 3.5 kilograms per hectare in 2025 as a direct result of GM crop use.

To offer farmers new weed-control strategies, Monsanto and other biotechnology companies, such as Dow AgroSciences, based in Indianapolis, Indiana, are developing new herbicide-resistant crops that work with different chemicals, which they expect to commercialize within a few years.

Mortensen says that the new technologies will lose their effectiveness as well. But abandoning chemical herbicides completely is not a viable solution, says Jonathan Gressel, a weed scientist at the Weizmann Institute of Science in Rehovot, Israel. Using chemicals to control weeds is still more efficient than ploughing and tilling the soil, and is less environmentally damaging. “When farmers start to use more sustainable farming practices together with mixtures of herbicides they will have fewer problems,” he says.

GM cotton has driven farmers to suicide: False
During an interview in March, Vandana Shiva, an environmental and feminist activist from India, repeated an alarming statistic: “270,000 Indian farmers have committed suicide since Monsanto entered the Indian seed market,” she said. “It’s a genocide.”

The claim, based on an increase in total suicide rates across the country in the late 1990s, has become an oft-repeated story of corporate exploitation since Monsanto began selling GM seed in India in 2002.

Bt cotton, which contains a gene from the bacterium Bacillus thuringiensis to ward off certain insects, had a rough start. Seeds initially cost five times more than local hybrid varieties, spurring local traders to sell packets containing a mix ofBt and conventional cotton at lower prices. The sham seeds and misinformation about how to use the product resulted in crop and financial losses. This no doubt added strain to rural farmers, who had long been under the pressures of a tight credit system that forced them to borrow from local lenders.

But, says Glover, “it is nonsense to attribute farmer suicides solely to Bt cotton”. Although financial hardship is a driving factor in suicide among Indian farmers, there has been essentially no change in the suicide rate for farmers since the introduction ofBt cotton.

That was shown by researchers at the International Food Policy Research Institute in Washington DC, who scoured government data, academic articles and media reports about Bt cotton and suicide in India. Their findings, published in 2008 and updated in 2011, show that the total number of suicides per year in the Indian population rose from just under 100,000 in 1997 to more than 120,000 in 2007. But the number of suicides among farmers hovered at around 20,000 per year over the same period.

And since its rocky beginnings, Bt cotton has benefited farmers, says Matin Qaim, an agricultural economist at Georg August University in Göttingen, Germany, who has been studying the social and financial impacts of Bt cotton in India for the past 10 years. In a study of 533 cotton-farming households in central and southern India, Qaim found that yields grew by 24% per acre between 2002 and 2008, owing to reduced losses from pest attacks. Farmers’ profits rose by an average of 50% over the same period, owing mainly to yield gains (see ‘A steady rate of tragedy’). Given the profits, Qaim says, it is not surprising that more than 90% of the cotton now grown in India is transgenic.

Glenn Stone, an environmental anthropologist at Washington University in St Louis, says that the empirical evidence for yield increases with Bt cotton is lacking. He has conducted original field studies and analyzed the research literature on Bt cotton yields in India, and says that most peer-reviewed studies reporting yield increases with Bt cotton have focused on short time periods, often in the early years after the technology came online. This, he says, introduced biases: farmers who adopted the technology first tended to be wealthier and more educated, and their farms were already producing higher-than-average yields of conventional cotton. They achieved high yields of Bt cotton partly because they lavished the expensive GM seeds with care and attention. The problem now is that there are hardly any conventional cotton farms left in India to compare GM yields and profits against, says Stone. Qaim agrees that many studies showing financial gains focus on short-term impacts, but his study, published in 2012, controlled for these biases and still found continued benefits.

Bt cotton did not cause suicide rates to spike, says Glover, but neither is it the sole reason for the yield improvements. “Blanket conclusions that the technology is a success or failure lack the right level of nuance,” he says. “It’s an evolving story in India, and we have not yet reached a definitive conclusion.”

Transgenes spread to wild crops in Mexico: Unknown
In 2000, some rural farmers in the mountains of Oaxaca, Mexico, wanted to gain organic certification for the maize (corn) they grew and sold in the hope of generating extra income. David Quist, then a microbial ecologist at the University of California, Berkeley, agreed to help in exchange for access to their lands for a research project. But Quist’s genetic analyses uncovered a surprise: the locally produced maize contained a segment of the DNA used to spur expression of transgenes in Monsanto’s glyphosate-tolerant and insect-resistant maize.

GM crops are not approved for commercial production in Mexico. So the transgenes probably came from GM crops imported from the United States for consumption and planted by local farmers who probably didn’t know that the seeds were transgenic. Quist speculated at the time that the local maize probably cross-bred with these GM varieties, thereby picking up the transgenic DNA.

When the discovery was published in Nature, a media and political circus descended on Oaxaca. Many vilified Monsanto for contaminating maize at its historic origin — a place where the crop was considered sacred. And Quist’s study came under fire for technical deficiencies, including problems with the methods used to detect the transgenes and the authors’ conclusion that transgenes can fragment and scatter throughout the genome. Nature eventually withdrew support for the paper but stopped short of retracting it. “The evidence available is not sufficient to justify the publication of the original paper,” read an editorial footnote to a critique of the research published in 2002.

Since then, few rigorous studies of transgene flow into Mexican maize have been published, owing mainly to a dearth of research funding, and they show mixed results. In 2003–04, Allison Snow, a plant ecologist at Ohio State University in Columbus, sampled 870 plants taken from 125 fields in Oaxaca and found no transgenic sequences in maize seeds.

But in 2009, a study led by Elena Alvarez-Buylla, a molecular ecologist at the National Autonomous University of Mexico in Mexico City, and Alma Piñeyro-Nelson, a plant molecular geneticist now at the University of California, Berkeley, found the same transgenes as Quist in three samples taken from 23 sites in Oaxaca in 2001, and in two samples taken from those sites in 2004. In another study, Alvarez-Buylla and her co-authors found evidence of transgenes in a small percentage of seeds from 1,765 households across Mexico. Other studies conducted within local communities have found transgenes more consistently, but few have been published.

Snow and Alvarez-Buylla agree that differences in sampling methods can lead to discrepancies in transgene detection. “We sampled different fields,” says Snow. “They found them but we didn’t.”

The scientific community remains split on whether transgenes have infiltrated maize populations in Mexico, even as the country grapples with whether to approve commercialization of Bt maize.

“It seems inevitable that there will be a movement of transgenes into local maize crops,” says Snow. “There is some proof that it is happening, but it is very difficult to say how common it is or what are the consequences.” Alvarez-Buylla argues that the spread of transgenes will harm the health of Mexican maize and change characteristics, such as a variety’s look and taste, that are important to rural farmers. Once the transgenes are present, it will be very difficult, if not impossible, to get rid of them, she says. Critics speculate that GM traits that accumulate in the genomes of local maize populations over time could eventually affect plant fitness by using up energy and resources or by disrupting metabolic processes, for example.

Snow says that there is no evidence so far for negative effects. And she expects that if the transgenes now in use drift to other plants, they will have neutral or beneficial effects on plant growth. In 2003, Snow and her colleagues showed that when Btsunflowers (Helianthus annuus) were bred with their wild counterparts, transgenic offspring still required the same kind of close care as its cultivated parent but were less vulnerable to insects and produced more seeds than non-transgenic plants. Few similar studies have been conducted, says Snow, because the companies that own the rights to the technology are generally unwilling to let academic researchers perform the experiments.

In Mexico, the story goes beyond potential environmental impacts. Kevin Pixley, a crop scientist and the director of the genetic resources program at the International Maize and Wheat Improvement Center in El Batan, Mexico, says that scientists arguing on behalf of GM technologies in the country have missed a crucial point. “Most of the scientific community doesn’t understand the depth of the emotional and cultural affiliation maize has for the Mexican population,” he says.

Tidy stories, in favor of or against GM crops, will always miss the bigger picture, which is nuanced, equivocal and undeniably messy. Transgenic crops will not solve all the agricultural challenges facing the developing or developed world, says Qaim: “It is not a silver bullet.” But vilification is not appropriate either. The truth is somewhere in the middle.

Source: http://www.scientificamerican.com/Nature