Pioneering adult stem cell trial approved by Japan.


The first trial of stem cells produced from a patient’s own body has been approved by the Japanese government.

Stem cells can become any other part of the body – from nerve to bone to skin – and are touted as the future of medicine.

_68836857_haematopoietic_stem_cells,_sem-spl

Researchers in Japan will use the cells to attempt to treat a form of blindness – age-related macular degeneration.

The announcement was described as “a major step forward” for research in the field.

There are already trials taking place using stem cells taken from embryos. But this is ethically controversial and the cells will not match a patient’s own tissues, so there is a risk of rejection.

Induced pluripotent stem cells, however, are made by coaxing a sample of the patient’s skin to become stem cells, so there should be no risk of rejection.

Sight saving?

Japan’s health minister, Norihisa Tamura, has ruled that the cells can now be tested in patients.

The trial will by run by the Riken Center for Developmental Biology and the Institute of Biomedical Research and Innovation Hospital in Kobe.

Initially, six patients will receive transplants of cells to see if the procedure can restore their damaged vision.

Prof Chris Mason, an expert on regenerative medicine at University College London said: “This was expected, but it’s obviously a major step forward.

“They are beneficial for two main reasons. One, they are from the patients themselves so the chance of rejection is greatly reduced and there are the ethical considerations – they do not have the baggage which comes with embryonic stem cells.

“On the down side we are a decade behind on the science. Induced pluripotent stem cells were discovered much later, so we’re behind on the safety.”

In 2012, Prof Shinya Yamanaka shared the Nobel prize for medicine or physiology for his discovery that adult human tissue could be coaxed back into a stem cell state.

Source: BBC

Japan to offer fast-track approval path for stem cell therapies.


japan

 A retooling of Japan’s drug authorization framework, on its way to becoming law, could produce the world’s fastest approval process specifically designed for regenerative medicine. “I don’t know of any other countries that have broken out with a separate and novel system” for cellular therapies, says University College London regenerative medicine expert Chris Mason, who recently met with Japanese policymakers to discuss the law.

Japan has recently been trying to shake its ‘drug lag’, a term used to describe its historically slow review process that sometimes translates into therapies reaching the market well after they have received the green light elsewhere. But the country is now ready to speed the translation of regenerative medicine to the bedside.

The move comes in response to the potential offered by its homegrown induced pluripotent stem (iPS) cell technology, which netted Shinya Yamanaka, of the University of Kyoto, last year’s Nobel Prize in Medicine or Physiology. The government already flooded the field with more than 20 billion yen ($206 million) in a supplementary budget announced earlier this year, and it’s expected to allocate another 90 billion yen into the sector over the coming decade.

Under the Pharmaceutical Affairs Law as it currently stands, regenerative therapies, like small-molecule drugs, must undergo three phases of costly and cumbersome clinical trials to get approval by Japan’s Pharmaceutical and Medical Devices Agency.

The proposed amendments to the pharmaceutical law will create a new, separate approval channel for regenerative medicine. Rather than using phased clinical trials, companies will have to demonstrate efficacy in pilot studies of as few as ten patients in one study, if the change is dramatic enough, or a few hundred when improvement is more marginal. According to Toshio Miyata, deputy director of the Evaluation and Licensing Division at the Pharmaceutical and Food Safety Bureau in Tokyo, if efficacy can be “surmised,” the treatment will be approved for marketing. At that stage, the treatment could be approved for commercial use and, crucially for such expensive treatments, for national insurance coverage.

Phased out

With the bar for regenerative therapies dramatically lowered by requiring only limited safety and efficacy data—and essentially doing away with the need for high-powered phase 3 trials—the amendments’ architects say it will be possible to get a stem cell treatment to the market in just three years, rather than the typical six or more. The law should also give local producers of regenerative medicine an edge even over those selling stem cell therapies in South Korea, where an accelerated system has helped companies get more stem cell treatments on the market than any other country (see Nat. Med. 18, 329, 2012). “It’s bold,” says Yoshihide Esaki, director of Bio-Industry Division, a bureau of the Ministry of Economy, Trade and Industry based in Tokyo, which promoted legislation calling for the update.

Following approval, there will be a post-market surveillance period of five to seven years, after which the treatment will be evaluated again for safety and efficacy. Every patient must be entered in a registry during that period, says Miyata. If the therapies prove inefficacious or unsafe, approval can be withdrawn.

Doug Sipp worries whether post-market surveillance will turn up relevant data. Sipp, who studies regulatory issues related to stem cells at the RIKEN Center for Developmental Biology in Kobe, Japan, says that making people who receive the therapies during this period cough up even the 30% co-pay generally required under Japan’s national insurance plan “will essentially be asking patients to pay for the privilege of serving as the subjects of medical experiments.” And since the patients are paying, the studies cannot be randomized or blinded. Paying patients are also more likely to experience placebo effects, Sipp warns.

“There’s also the opportunity costs to patients,” who might be able to find better therapies elsewhere, adds Mason. “We have to make sure these therapies are safe and effective. Otherwise these regulatory routes are going to be closed.”

Despite these concerns, passage of the pre-vetted law is almost a given. Esaki says there’s a 50% chance the Japanese parliament will pass the law during the current session, ending in June. If so, it would go into effect next April. If not, scientists might have to wait until November 2014 or as late as April 2015.

Source: Nature

Factbox: A look at the Nobel Medicine Prize.


Here is a look at the 2012 Nobel Prize for Physiology or Medicine, which was awarded jointly on Monday to John B. Gurdon and Shinya Yamanaka.

* The 2012 prize was awarded “for the discovery that mature cells can be reprogrammed to become pluripotent”. The two scientists discovered that mature, specialized cells can be reprogrammed to become immature cells capable of developing into all tissues of the body. Their findings revolutionized understanding of how cells and organisms develop.

* Nobel Prizes in Physiology or Medicine have been awarded 102 times since 1901. In all but 38 cases they were given to more than one recipient.

* Of the 199 individuals awarded the Nobel Prize in Physiology or Medicine, only ten are women. Of these eight, Barabara McClintock is the only one who has received an unshared Nobel Prize.

* Famous Winners: Robert Koch, the German physician and bacteriologist, won in 1905 for his work on tuberculosis. Frederick Banting, the Canadian physiologist who with his assistant Charles Best discovered insulin, the principal remedy for diabetes, won the prize in 1923.

* The oldest living recipient is Rita Levi-Montalcini, the first Nobel laureate to reach her hundredth birthday, who won the prize in 1986 with Stanley Cohen for their discoveries of growth factors. She celebrated her 103rd birthday last April.

Sources: Reuters, http://nobelprize.org.

 

UK, Japan scientists win Nobel for stem cell breakthroughs.


STOCKHOLM – Scientists from Britain and Japan shared a Nobel Prize on Monday for the discovery that adult cells can be transformed back into embryo-like stem cells that may one day regrow tissue in damaged brains, hearts or other organs.

John Gurdon, 79, of the Gurdon Institute in Cambridge, Britain and Shinya Yamanaka, 50, of Kyoto University in Japan, discovered ways to create tissue that would act like embryonic cells, without the need to harvest embryos.

They share the $1.2 million Nobel Prize for Medicine, for work Gurdon began 50 years ago and Yamanaka capped with a 2006 experiment that transformed the field of “regenerative medicine” – the field of curing disease by regrowing healthy tissue.

“These groundbreaking discoveries have completely changed our view of the development and specialization of cells,” the Nobel Assembly at Stockholm’s Karolinska Institute said.

All of the body’s tissue starts as stem cells, before developing into skin, blood, nerves, muscle and bone. The big hope for stem cells is that they can be used to replace damaged tissue in everything from spinal cord injuries to Parkinson’s disease.

Scientists once thought it was impossible to turn adult tissue back into stem cells, which meant that new stem cells could only be created by harvesting embryos – a practice that raised ethical qualms in some countries and also means that implanted cells might be rejected by the body.

In 1958, Gurdon was the first scientist to clone an animal, producing a healthy tadpole from the egg of a frog with DNA from another tadpole’s intestinal cell. That showed developed cells still carry the information needed to make every cell in the body, decades before other scientists made headlines around the world by cloning the first mammal, Dolly the sheep.

More than 40 years later, Yamanaka produced mouse stem cells from adult mouse skin cells, by inserting a few genes. His breakthrough effectively showed that the development that takes place in adult tissue could be reversed, turning adult cells back into cells that behave like embryos. The new stem cells are known as “induced pluripotency stem cells”, or iPS cells.

“The eventual aim is to provide replacement cells of all kinds,” Gurdon’s Institute explains on its website.

“We would like to be able to find a way of obtaining spare heart or brain cells from skin or blood cells. The important point is that the replacement cells need to be from the same individual, to avoid problems of rejection and hence of the need for immunosuppression.”

The science is still in its early stages, and among important concerns is the fear that iPS cells could grow out of control and develop into tumors.

Nevertheless, in the six years since Yamanaka published his findings the discoveries have already produced dramatic advances in medical research, with none of the political and ethical issues raised by embryo harvesting.

“NOT A ONE-WAY STREET”

Thomas Perlmann, Nobel Committee member and professor of Molecular Development Biology at the Karolinska Institute said: “Thanks to these two scientists, we know now that development is not strictly a one-way street.”

“There is lot of promise and excitement, and difficult disorders such as neurodegenerative disorders, like perhaps Alzheimer’s and, more likely, Parkinson’s disease, are very interesting targets.”

The techniques are already being used to grow specialized cells in laboratories to study disease, the chairman of the awards committee, Urban Lendahl, told Reuters.

“You can’t take out a large part of the heart or the brain or so to study this, but now you can take a cell from for example the skin of the patient, reprogram it, return it to a pluripotent state, and then grow it in a laboratory,” he said.

“The second thing is for further ahead. If you can grow different cell types from a cell from a human, you might – in theory for now but in future hopefully – be able to return cells where cells have been lost.”

Yamanaka’s paper has already been cited more than 4,000 times in other scientists’ work. He has compared research to running marathons, and ran one in just over four hours in March to raise money for his lab.

In a news conference in Japan, he thanked his team of young researchers: “My joy is very great. But I feel a grave sense of responsibility as well.”

Gurdon has spoken of an unlikely career for a young man who loved science but was steered away from it at school. He still keeps a discouraging school report on his office wall.

“I believe he has ideas about becoming a scientist… This is quite ridiculous,” his teacher wrote. “It would be a sheer waste of time, both on his part and of those who have to teach him.” The young John “will not listen, but will insist on doing his work in his own way.”

Source: Yahoo News