New Dangerous Strain Of HIV Discovered


Researchers have discovered a new, more aggressive strain of the human immunodeficiency virus (HIV) that develops into AIDS much more quickly than other strains, Medical News Today reported.

In a new study published in the Journal of Infectious Diseases, scientists detailed the new strain as a “recombinant” virus – a hybrid of two virus strains. Called A3/02 – a cross between the 02AG and A3 viruses – the strain can develop into AIDS in just five years after first infection – one of the shortest time periods for HIV-1 types.

“Recombinants seem to be more vigorous and more aggressive than the strains from which they developed,” said first author Angelica Palm, a doctoral candidate at Lund University in Sweden.

So far, the A3/02 strain has only been seen in Guinea-Bissau, West Africa, but other studies have shown that recombinants are spreading more quickly across the globe.

“HIV is an extremely dynamic and variable virus. New subtypes and recombinant forms of HIV-1 have been introduced to our part of the world, and it is highly likely that there are a large number of circulating recombinants of which we know little or nothing,” said senior author Patrik Medstran, professor of clinical virology at Lund University. “We therefore need to be aware of how the HIV-1 epidemic changes over time.”

[​IMG] ​

 

Secret Botulism Paper Published.


The discovery of a new form of the deadly botulinum toxin gets published, but its sequence is kept under wraps until an antidote is developed.

In a publishing first, the sequence of a newly discovered protein is not divulged in papers announcing the finding. Researchers at the California Department of Public Health in Sacramento discovered the protein, a new type of the extremely dangerous botulinum toxin, lurking in the feces of a child who displayed the symptoms of botulism. They published their findings in two reports on the website of The Journal of Infectious Diseases, but absent from either paper was the DNA sequence of the protein, the eighth form of botulinum toxin recovered from the bacteriumClostridium botulinum. The move represents the first time that a DNA sequence has been omitted from such a paper. “Because no antitoxins as yet have been developed to counteract the novel C. Botulinum toxin,” wrote editors at The Journal of Infectious Diseases, “the authors had detailed consultations with representatives from numerous appropriate US government agencies.”

These agencies, which included the Centers for Disease Control and Prevention and the Department of Homeland Security, approved publication of the papers so long as the gene sequence that codes for the new protein was left out. According to New Scientist, the sequence will be published as soon as antibodies are identified that effectively combat the toxin, which appears to be part of a whole new branch on the protein’s family tree.

The New Deadliest Substance Known to Man Is Top Secret (For Now)


Scientists recently discovered a new type of botulinum toxin (a.k.a. botox) that they believe is the deadliest substance known to man. Because they’ve yet to discover an antitoxin, researchers won’t publish the details of gene sequence due to security concerns—a first for the scientific community. Thank God.

When scientists say this stuff is deadly, they mean it. It takes an injection of just 2 billionths of a gram or inhaling 13 billionths of a gram to kill an adult. A spoonful of the stuff in a city’s water supply could be catastrophic. The toxin, which comes from the bacterium Clostridium botulinum, blocks the chemical that makes nerves work, causing botulism and death by paralysis. In a comment accompanying a newly published journal article on the new botox, Stanford Medical School professor David Relman said the substance posed “an immediate and unusually serious risk to society.”

You’d be right to wonder: If this stuff is so dangerous, why do we have it in the first place? Well, it’s not manmade if that’s what you’re thinking. Before this new discovery, there were seven known branches on the botulinum family tree, but researchers recently found an eighth type of toxin in stool samples of an infant with botulism. It just so turns out that eighth type, known as type H, is the deadliest substance in the world. Scientists are withholding the genetic sequence so that terrorists, for instance, can’t synthesize it and do something terrible. Terrorists do like botox, too. It was one of these toxins that the Japanese cult Aum Shinrikyo tried to release in downtown Tokyo in the 1990s.

Despite the somewhat sensational nature of this latest discovery, everything is okay for now. This is, however, a rude reminder of how scientific discoveries can always be twisted into weapons of warfare. Unless we keep them secret, that is.

Human Breast Milk Inactivates Hepatitis C Virus Infectivity.


 A new study shows why breastfeeding is generally safe even when mothers are infected with the hepatitis C virus (HCV).

The reason is that human breast milk inactivates hepatitis C virus (HCV) infectivity by disrupting its envelope, researchers from Germany have found.

“This study provides a novel mechanism for the protective properties of human mother’s milk against HCV,” Dr. Eike Steinmann from the TWINCORE Center for Experimental and Clinical Infection Research in Hannover told Reuters Health by email. “A new finding is that lipases in human milk generate free fatty acids that damage the viral envelope and render them non-infectious.”

In an editorial published with the paper online September 24 in The Journal of Infectious Diseases, Dr. Ravi Jhaveri from the University of North Carolina in Chapel Hill says “the results provide a plausible explanation for why breastfeeding is not a risk factor for HCV transmission. This is reassuring for us as practitioners when we counsel our HCV patients that it is safe for them to breastfeed.”

Using breast milk from healthy HCV-negative women, the research team found that even short preincubation periods of HCV in the milk brought consistent reductions of HCV infectivity by 2 to 3 orders of magnitude.

The breast milk inactivated HCV infectivity independent of the viral genotype, and antiviral activity was concentration dependent. Concentrations between 4% and 6% milk were sufficient to reduce HCV infectivity, whereas higher dilutions abolished the antiviral effect.

The antiviral activity was specific to human milk. It was not found in milk from horses, cows, or commercial infant formula.

The anti-viral activity was not destroyed by heat treatment, the authors reported.

In a series of experiments, the researchers showed that lipases in human milk generated fatty acids that disrupted the viral envelope, resulting in the loss of viral infectivity.

“Similar processes concerning the release of free fatty acids take place upon digestion of human breast milk by the infant,” the investigators note. “Therefore, milk digestion products, like free fatty acids, released in the stomach might be able to inactivate residual viral particles which otherwise could be transmitted upon breastfeeding.”

Human breast milk also had significant antiviral effects against other enveloped viruses (influenza, herpes simplex, and vesicular stomatitis virus) but no pronounced effect on non-enveloped viruses (murine norovirus, rotavirus).

“As there are far more enveloped viruses known than tested in this study, further investigations are necessary,” Dr. Steinmann said.

“Human breast milk efficiently inactivates HCV in vitro and neither the Centers for Disease Control nor the American Association for the Study of Liver Diseases argues against breastfeeding from HCV infected women unless they have cracked or bleeding nipples,” Dr. Steinmann concluded.

Dr. Jhaveri’s editorial concludes, “After reading this article, when we clinicians next encounter an HCV infected patient that just delivered a healthy infant and wants to breastfeed, we have yet another reason to say ‘Breast is Best.'”