New study explains why men’s noses are bigger than women’s.


Human noses come in all shapes and sizes. But one feature seems to hold true: Men’s noses are bigger than women’s. A new study from the University of Iowa concludes that men’s noses are about 10 percent larger than female noses, on average, in populations of European descent. The difference, the researchers believe, comes from the sexes’ different builds and energy demands: Males in general have more lean , which requires more oxygen for muscle tissue growth and maintenance. Larger noses mean more oxygen can be breathed in and transported in the blood to supply the muscle.

The researchers also note that males and females begin to show differences in nose size at around age 11, generally, when puberty starts. Physiologically speaking, males begin to grow more lean muscle mass from that time, while females grow more fat mass. Prior research has shown that, during puberty, approximately 95 percent of body weight gain in males comes from fat-free mass, compared to 85 percent in females.

“This relationship has been discussed in the literature, but this is the first study to examine how the size of the nose relates to body size in males and females in a longitudinal study,” says Nathan Holton, assistant professor in the UI College of Dentistry and lead author of the paper, published in the American Journal of Physical Anthropology. “We have shown that as body size increases in males and females during growth, males exhibit a disproportionate increase in nasal size. This follows the same pattern as energetic variables such as oxygenate consumption, basal metabolic rate and daily energy requirements during growth.”

It also explains why our noses are smaller than those of our ancestors, such as the Neanderthals. The reason, the researchers believe, is because our distant lineages had more muscle mass, and so needed larger noses to maintain that muscle. Modern humans have less lean muscle mass, meaning we can get away with smaller noses.

“So, in humans, the nose can become small, because our bodies have smaller oxygen requirements than we see in archaic humans,” Holton says, noting also that the rib cages and lungs are smaller in modern humans, reinforcing the idea that we don’t need as much oxygen to feed our frames as our ancestors. “This all tells us physiologically how have changed from their ancestors.”

Holton and his team tracked nose size and growth of 38 individuals of European descent enrolled in the Iowa Facial Growth Study from three years of age until the mid-twenties, taking external and internal measurements at regular intervals for each individual. The researchers found that boys and girls have the same nose size, generally speaking, from birth until puberty percolated, around age 11. From that point onward, the size difference grew more pronounced, the measurements showed.

“Even if the is the same,” Holton says, “males have larger noses, because more of the body is made up of that expensive tissue. And, it’s at puberty that these differences really take off.”

https://i0.wp.com/cdn.physorg.com/newman/gfx/news/2013/thebigmaleno.jpg

Holton says the findings should hold true for other populations, as differences in male and female physiology cut across cultures and races, although further studies would need to confirm that.

Prior research appears to support Holton’s findings. In a 1999 study published in the European Journal of Nutrition, researchers documented that males’ energy needs doubles that of females post-, “indicating a disproportional increase in energy expenditure in during this developmental period,” Holton and his colleagues write.

Another interesting aspect of the research is what it all means for how we think of the nose. It’s not just a centrally located adornment on our face; it’s more a valuable extension of our lungs.

“So, in that sense, we can think of it as being independent of the skull, and more closely tied with non-cranial aspects of anatomy,” Holton says.

BMI may be most vital determinant of basal metabolic rate in PCOS.


The BMI of patients with polycystic ovary syndrome appeared to be the most important factor in basal metabolic rate, independent of the polycystic ovary syndrome phenotype and insulin resistance, according to Margareta D. Pisarska, MD, who presented the data at the conjoint meeting of the International Federation of Fertility Societies and the American Society for Reproductive Medicine.

“Based on our study — since we do think obesity does play a significant role — we believe it is important for endocrinologists to help counsel these women in a fashion similar to those who are obese by emphasizing that weight loss and lowering BMI are important,” Pisarska, director of the division of reproductive endocrinology and infertility; director of the Fertility and Reproductive Medicine Center at Cedars-Sinai Medical Center; associate professor at Cedars-Sinai Medical Center and the David Geffen School of Medicine at UCLA, told Endocrine Today.

 

The researchers conducted the case-control study examining the metabolic changes (ie, lean body mass, body fat mass, body fat percentage, skeletal muscle mass, BMI and basal metabolic rate) in 128 patients with PCOS (mean age, 28.1 years) and 72 eumenorrheic, non-hirsute controls (mean age, 32.9 years).

In terms of hormonal profile, patients with PCOS had greater testosterone, dehydroepiandrosterone sulfate (DHEA-sulfate), fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR) levels compared with controls.

After controlling for age and BMI differences, there was no difference in body composition parameters between patients with PCOS and controls. There were no significant results regarding changes to the basal metabolic rate (P=.0162), lean body mass (P=.0153) or skeletal muscle mass (P=.0169), she said.

However, differences in fasting insulin and HOMA-IR remained significant. When looking at insulin resistance in women with PCOS as a potential factor affecting body composition and metabolic rates, there was also no difference between these groups.

“It is not necessarily PCOS; BMI and age are probably the more important determinants of basal metabolic rate, regardless of PCOS phenotype and insulin resistance,” Pisarska said.

BMI may be most vital determinant of basal metabolic rate in PCOS.


The BMI of patients with polycystic ovary syndrome appeared to be the most important factor in basal metabolic rate, independent of the polycystic ovary syndrome phenotype and insulin resistance, according to Margareta D. Pisarska, MD, who presented the data at the conjoint meeting of the International Federation of Fertility Societies and the American Society for Reproductive Medicine.

“Based on our study — since we do think obesity does play a significant role — we believe it is important for endocrinologists to help counsel these women in a fashion similar to those who are obese by emphasizing that weight loss and lowering BMI are important,” Pisarska, director of the division of reproductive endocrinology and infertility; director of the Fertility and Reproductive Medicine Center at Cedars-Sinai Medical Center; associate professor at Cedars-Sinai Medical Center and the David Geffen School of Medicine at UCLA, told Endocrine Today.

The researchers conducted the case-control study examining the metabolic changes (ie, lean body mass, body fat mass, body fat percentage, skeletal muscle mass, BMI and basal metabolic rate) in 128 patients with PCOS (mean age, 28.1 years) and 72 eumenorrheic, non-hirsute controls (mean age, 32.9 years).

In terms of hormonal profile, patients with PCOS had greater testosterone, dehydroepiandrosterone sulfate (DHEA-sulfate), fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR) levels compared with controls.

After controlling for age and BMI differences, there was no difference in body composition parameters between patients with PCOS and controls. There were no significant results regarding changes to the basal metabolic rate (P=.0162), lean body mass (P=.0153) or skeletal muscle mass (P=.0169), she said.

However, differences in fasting insulin and HOMA-IR remained significant. When looking at insulin resistance in women with PCOS as a potential factor affecting body composition and metabolic rates, there was also no difference between these groups.

“It is not necessarily PCOS; BMI and age are probably the more important determinants of basal metabolic rate, regardless of PCOS phenotype and insulin resistance,” Pisarska said.

Basal metabolic rate can evolve independently of morphological and behavioural traits.


Quantitative genetic analyses of basal metabolic rate (BMR) can inform us about the evolvability of the trait by providing estimates of heritability, and also of genetic correlations with other traits that may constrain the ability of BMR to respond to selection. Here, we studied a captive population of zebra finches (Taeniopygia guttata) in which selection lines for male courtship rate have been established. We measure BMR in these lines to see whether selection on male sexual activity would change BMR as a potentially correlated trait. We find that the genetic correlation between courtship rate and BMR is practically zero, indicating that the two traits can evolve independently of each other. Interestingly, we find that the heritability of BMR in our population (h2=0.45) is markedly higher than was previously reported for a captive zebra finch population from Norway. A comparison of the two studies shows that additive genetic variance in BMR has been largely depleted in the Norwegian population, especially the genetic variance in BMR that is independent of body mass. In our population, the slope of BMR increase with body mass differs not only between the sexes but also between the six selection lines, which we tentatively attribute to genetic drift and/or founder effects being strong in small populations. Our study therefore highlights two things. First, the evolvability of BMR may be less constrained by genetic correlations and lack of independent genetic variation than previously described. Second, genetic drift in small populations can rapidly lead to different evolvabilities across populations.

Source: http://www.nature.com