GM bacteria ‘could eliminate’ sleeping sickness


Speed read

  • Sleeping sickness affects 30,000 people and causes yearly loss of US$1 billion in Africa
  • Bacteria that live inside tsetse flies can be engineered to try curb infections
  • A study finds that in some areas such bacteria can help eliminate the disease

Releasing tsetse flies that carry genetically modified bacteria resistant to the parasite that causes sleeping sickness could eliminate the disease in Africa under certain conditions, a modelling study has shown.African trypanosomiasis or sleeping sickness — caused when the parasite is transmitted between livestock and humans via tsetse fly bites — infects 30,000 people, and causes losses of US$1 billion from livestock production a year in Sub-Saharan Africa, according to the study published in PLOS Neglected Tropical Diseases last month (15 August).

9A70D522413B4332C67CC79E10C0DD99

Researchers have been considering genetically modifying bacteria that live inside tsetse flies, to try to eliminate the disease in the wild, a strategy called paratransgenesis.

A group of researchers in the United States modelled the spread of a bacteria (Wolbachia) to see if it could help drive another bacteria (Sodalis) carrying the resistance gene into the wild tsetse population.

Sodalis lives in the gut and Wolbachia lives in the reproductive organs [of tsetse flies]. But they are transmitted together to the tsetse progeny,” Serap Aksoy, co-author of the study and a researcher at the Yale School of Public Health, tells SciDev.Net.

Wolbachia gives the female tsetse flies in which it resides a reproductive advantage over female flies in which it does not, therefore becoming more common over time in the tsetse population. (But its presence in the population of flies also depends on different factors.)

It is this well-known feature of Wolbachia that made researchers think of it as a way to spread the resistance gene inserted into Sodalis, as the link in transmission between the two bacteria species had been shown to work in the laboratory in previous studies.

Sodalis is an ideal carrier of the resistance gene as it resides in the gut, which is where the sleeping sickness parasite first multiplies following infection, researchers say.

The study used data from Sub-Saharan Africa on the transmission of sleeping sickness among tsetse flies, humans and livestock, alongside data from Uganda on the number of wild tsetse flies carrying Wolbachia, to show that paratransgenesis is a promising technique for eliminating the disease.

It shows that a single release of tsetse flies, carrying both Wolbachia and genetically-modified Sodalis, could potentially eliminate sleeping sickness in between one-to-ten years, depending on the exact numbers of flies released.

But because several tsetse fly species exist in the wild, this can only be achieved if the species released comprises at least 85 per cent of the total population in the area of release.

Aksoy also warns that the model works under the assumptions that the anti-parasite gene is not lost from the tsetse population, the parasite does not gain resistance to it and the link between Sodalis and Wolbachia does not break.

François Chappuis, a medical advisor for Médecins Sans Frontières, an NGO involved in the fight against sleeping sickness, says: “Every new control method that is developed can be used alongside existing methods … If this technique of paratransgenesis is applicable on a large-scale while using limited resources, it may prove to be a very useful control method.

“But going from a mathematical model to a pilot study in infected areas and then applications in large, remote areas seems a long way off.”

Aksoy’s lab is now planning to insert the resistance gene into Sodalis, a feat that has been independently achieved by Jan Van Den Abbeele, a senior researcher at the Institute of Tropical Medicine in Antwerp, Belgium.

Van Den Abbeele plans to take the technique a step further by recolonising tsetse flies with genetically modified Sodalis to see if it protects flies from carrying the sleeping sickness parasite.

“So far, we were successful in genetically-modifying Sodalis to express an [anti-parasite gene] that specifically targets bloodstream [parasites]. With this we showed the proof-of-concept that indeed the Sodalis bacterium is able to express and release a sufficient amount of active, functional, parasite-targeting [compound],” Van Den Abbeele tells SciDev.Net.

His team is continuing to identify genes coding for proteins that target the parasite in the tsetse fly gut, and studying the inheritance of the genetically modified bacteria.

“We are now doing more basic research to understand better the mechanism of Sodalis mother-to-offspring transfer in order to use that knowledge to improve [its] transfer to the [tsetse] offspring,” he says.

The aim is to produce tsetse flies that are resistant to human and animal sleeping sickness , says Van Den Abbeele, but a similar approach is also being explored for malaria and Chagas disease, which are transmitted by mosquitoes and Triatoma bugs respectively.

Evaluating Paratransgenesis as a Potential Control Strategy for African Trypanosomiasis


Genetic-modification strategies are currently being developed to reduce the transmission of vector-borne diseases, including African trypanosomiasis. For tsetse, the vector of African trypanosomiasis, a paratransgenic strategy is being considered: this approach involves modification of the commensal symbiotic bacteria Sodalis to express trypanosome-resistance-conferring products. Modified Sodalis can then be driven into the tsetse population by cytoplasmic incompatibility (CI) from Wolbachia bacteria. To evaluate the effectiveness of this paratransgenic strategy in controlling African trypanosomiasis, we developed a three-species mathematical model of trypanosomiasis transmission among tsetse, humans, and animal reservoir hosts. Using empirical estimates of CI parameters, we found that paratransgenic tsetse have the potential to eliminate trypanosomiasis, provided that any extra mortality caused byWolbachia colonization is low, that the paratransgene is effective at protecting against trypanosome transmission, and that the target tsetse species comprises a large majority of the tsetse population in the release location.

Source: PLOS

To Stop Malaria, Infect the Mosquitoes.


malaria

For thousands of years, mosquitoes have made people sick. But now humanity may have found a way to turn the tables. In a new study, researchers report that giving mosquitoes an infection of their own—with a strange bacterium that tinkers with the insects’ sex lives—may prevent mosquitoes from transmitting malaria.

The advance is being hailed by some as a milestone in medical entomology. “I’m quite jealous,” says entomologist Scott O’Neill of Monash University in Australia, who was not involved in the work. “We have all tried this for years and years and years.” The mosquito species in question, Anopheles stephensi, is a key malaria vector in South Asia and the Middle East, and the study offers the tantalizing possibility of ridding entire cities such as New Delhi and Calcutta of malaria, says Willem Takken of Wageningen University in the Netherlands, who was also not involved in the work. In the future, the same technique might also work for other malaria-carrying mosquitoes, such as A. gambiae, which predominates in Africa, Takken says.

Scientists have long dreamed of replacing disease-carrying mosquito populations with new ones that pose no threat to humans because they cannot transmit disease. In the past decade, a bacterium called Wolbachia has emerged as a promising ally in their work. These intracellular bacteria spread from insect mothers to their offspring and play some bizarre tricks on their hosts’ sex lives. For instance, by ensuring that infected males can’t reproduce with uninfected females—a phenomenon called cytoplasmic incompatibility—the bacteria can maximize the number of infected offspring in the next generation and sweep through populations in very little time.

Scientists’ initial idea was to introduce genes conferring resistance to human pathogens into mosquitoes, and then enlist Wolbachia to help these traits race through the population. The difficult part was infecting mosquitoes with Wolbachia in the first place; for some reason, they seemed not amenable to a long-term, stable infection. A landmark came in a 2005 Science paper, in which Xi Zhiyong, then at Johns Hopkins University in Baltimore, Maryland, and colleagues infected a mosquito species called Aedes aegypti, which is the main carrier for dengue fever, a debilitating viral disease that causes intense muscle and joint pains.

A few years later, O’Neill and others made a startling discovery: They didn’t even need to couple Wolbachia to infection resistance genes. The bacterium alone made Ae. aegypti unable to transmit the virus. Others have shown that the same was true for several other viruses and parasites.

It’s not clear exactly why this is; one hypothesis is that Wolbachia competes for resources with other intruders, such as the dengue virus. But that hasn’t stopped scientists from trying to make use of the phenomenon. In 2011, O’Neill’s group released Wolbachia-infected Ae. aegypti mosquitoes in Australia, where they found that the infection took hold and spread. Currently, experiments are also underway in Vietnam, where dengue is an important disease.

But dengue isn’t the biggest mosquito-borne killer; that’s malaria, which is responsible for the deaths of more than half a million people annually and is transmitted by Anopheles mosquitoes, a very different genus. They have proven even more difficult to infect with Wolbachia. The frustrating quest — and the fact that not a singleAnopheles species is known to be naturally infected with the bacteria — had led some researchers to question whether it was possible at all, O’Neill says.

But Xi, who now leads his own group at Michigan State University in East Lansing, has done it again. In a new study reported online today inScience, the researchers showed that they can infect A. stephensi withWolbachia, that the infection is passed down through at least 34 generations, and that it can take over entire populations in cages.

The secret? Part of it is luck, Takken says. The team worked with a strain called Wolbachia wAlbB that happened to catch on in this mosquito. Technical skill is another factor, says entomologist Jason Rasgon of Pennsylvania State University, University Park, who wasn’t involved in the work. Injecting mosquito eggs is “very much an art,” he says, and Xi “is probably the best person in the world to do it.”

The team had to inject thousands of embryos before they had success. Xi says part of the trick is to suck a minuscule amount of cytoplasm out of egg cells first to make room for the injected bacteria and prevent cells from bursting. Despite their horrendous death toll, Anopheles mosquitoes are delicate critters, he says.

Xi’s group also fed infected mosquitoes malaria parasites to test whether Wolbachia could block their life cycle inside the mosquito’s body. They showed that Wolbachia-infected mosquitoes didn’t become totally resistant to malaria, as hoped. Instead, the number of parasites in their saliva 14 days after their exposure went down only by about a factor of 3.4, which means the mosquitoes could still transmit the disease, although perhaps not as efficiently.

Another key issue is whether Wolbachia-infected mosquitoes can produce the same number of offspring as uninfected ones, Takken says. If they can’t, they won’t be able to outcompete wild populations, and the insects wouldn’t fly as a malaria control scheme. Xi says he plans to publish another paper on that issue. Studies are also needed to determine how many infected mosquitoes need to be released in the field to get results fast enough. There might be other Wolbachia strains that do the job better, Rasgon says. For now, what’s most important is that the researchers have succeeded in the first place, he says. He is inspired because his own group is trying to infect A. gambiae, the main malaria vector in Africa and an even more difficult target to infect. “It’s very good for me to see that it can actually be done,” he says. “We will keep pushing ahead.”

Source: sciencemag.org

Anti-Malarial Mosquitoes?


Mosquito

Artificially induced bacterial infections in mosquitoes could reduce the spread of malaria-causing parasites.

Creating a stable, heritable infection of Wolbachiabacteria in Anopheles stephensi mosquitoes diminishes the insects’ chances of transmitting the human malaria-causing parasite, according to a report published today (May 9) in Science. The results suggest that such modified mosquitoes could contribute to malaria prevention strategies in the future.

“It’s a very nice demonstration that Anophelesgenus, the most important disease vector mosquitoes, which haven’t previously been shown to naturally support Wolbachia infections, can indeed do so in a stable inherited manner,” saidSteven Sinkins, head of the Mosquitoes & Wolbachia group in the Experimental Medicine division at the University of Oxford, UK, who was not involved in the research. “It’s all very exciting stuff in terms of developing new malaria control strategies.”

Wolbachia are parasites or endosymbionts to many insect species, even some mosquitoes, and in certain cases can protect their hosts from infection by other parasites. This protective feature led researchers to wonder whether Wolbachia might be used to prevent the spread of dangerous human parasites in their insect hosts.

Indeed, it was recently shown that establishing a Wolbachia infection in the dengue fever virus-carrying mosquito, Aedes aegypti, made the insects resistant to the virus. Such mosquitoes have now been released into the wild in field trials, and could potentially reduce the incidence of dengue virus infections in people.

Zhiyong Xi, director of the Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases in Guangdong, China, has now applied the same approach to establishWolbachia infections in Anopheles stephensi mosquitoes, which are the major carriers of malaria-causing Plasmodium falciparum in South Asia and the Middle East.

Anopheles mosquitoes are not natural hosts to Wolbachia bacteria, but if a stable infection is established, there’s a good chance it would persist, said Xi, because “this bacteria is transmitted from mother to offspring.” Achieving such a stable, heritable infection, however, had been “for a long time the biggest challenge,” he said.

“Surprisingly enough for the scourge of humanity, [Anopheles mosquitoes] are rather difficult and temperamental and not particularly robust to work with in the lab,” explained Sinkins. “It’s also been a mater of identifying the right strain [of Wolbachia] that will be able to form inherited infections without being too harmful to the mosquito.”

But if anyone could get stable infection to work, Xi could, said Jason Rasgon, a professor of entomology at Penn State University, who was not involved in the work. “This is a major step. People have been trying to put Wolbachia into Anopheles for, I think, 25 years,” said Rasgon, “And I’m not surprised this lab was the first to do it. Zhiyong Xi and his team are probably the best people in the world at doing embryonic microinjections of mosquitoes”—the technique necessary for transferring the Wolbachia bacteria.

Despite the technical expertise, it wasn’t an easy task. From nearly 500 mosquito embryos that Xi’s team microinjected with Wolbachia, only six hatched. Four of those survived to adulthood, and only one infected female passed the bacteria to her progeny to produce a stable line of infected mosquitoes over many generations.

The infected mosquitoes were also not as reproductively fit at their uninfected counterparts—only half their eggs hatched successfully. However, they had an alternative advantage, Xi explained.Wolbachia-infected male mosquitoes are unable to successfully breed with uninfected females due to a phenomenon called cytoplasmic incompatability. The resulting preference for infected females helps eradicate uninfected individuals from the population. Indeed Xi’s infected mosquitoes could eradicate their uninfected counterparts after eight generations, so long as infected males were sufficiently abundant, the team found.

Importantly, when the Wolbachia-infected mosquitos were fed P. falciparum, the parasites’ development to the malaria-causing sporozoite stage was suppressed 3 to 4 fold compared to P. falciparum infections in wild type mosquitoes. Such a reduction in the wild would likely amount to complete resistance, the authors said.

This claim “needs to be tested,” however, said Rasgon. For the modified mosquitoes to help eradicate malaria in the field, he said, researchers “need to ensure that [the strategy] is going to block epidemiologically relevant levels of Plasmodium.” They also need to put Wolbachia intoAnopheles gambiae, he added. Although Anopheles stephensi is an important vector in South Asia, he explained, “the main vector, if you really want to have a major effect on malaria infection, would beAnopheles gambiae, which is the African vector.”

But Anopheles gambiae is even more difficult to work with than Anopheles stephensi, explained Xi. “You probably need 5,000 [injections] to get one [stable line],” he said. He remains hopeful, though. “I think in the future we will be successful.” And in the meantime, he is working toward field trials withAnopheles stephensi in South Asia, he said.

 

G. Bian et al., “Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection,” Science, 340: 748-751, 2013.

Source: http://www.the-scientist.com