UK first in heart failure operation.


Sevket Gocer,
Sevket Gocer, right, was the first patient in the UK

A pioneering operation to improve the function of failing hearts while they are still beating has taken place in the UK for the first time.

Patients with heart failure struggle to pump blood around the body and mild exercise can leave them breathless.

Surgeons used a form of “cardiac sewing” to remove scar tissue and reduce the size of the heart so it pumps more efficiently.

The operation took place at King’s College Hospital in London.

One common cause of heart failure is when the arteries which nourish the organ become blocked, leading to a heart attack. Heart muscle dies and is replaced by hard scar tissue which does not beat.

Over time, the scar tissue can stretch so chambers of the heart become larger, meaning the organ has more blood to force out with each heartbeat.

The overall effect is a weaker heart, less able to do its job, transforming simple day-to-day tasks like climbing stairs into extreme exertions.

In the operation, surgeons used a wire with anchors at both ends to pierce two sections of heart muscle. When the wire was tightened, the walls of the heart were “remodelled”.

Before and after surgery
Scar tissue, in grey, is “sewn out”

The scar tissue was effectively removed and the volume of one of the chambers of the heart was reduced by a quarter.

Sevket Gocer, 58 and from Bromley in south-east London, was the first patient to be treated in the UK. His heart function is said to have “improved significantly” after the operation.

A similar procedure used to be performed by opening up the chest and stopping the heart, but it was a very risky operation and fell out of medical practice.

Surgeons hope the less invasive operation, which can be performed while the heart is still pumping, will be a better option for patients.

Mr Olaf Wendler, a professor of cardiac surgery at King’s College Hospital, told the BBC: “In the technique we have now used for the first time in the UK, one does not need to stop the heart, one does not even necessarily need to place the patient on a heart-lung machine.

“It’s a less traumatic and less invasive type of procedure.”

He said the operation was being tested in a trial at hospitals across Europe and that the procedure could make a difference to patients’ lives.

He said: “[If successful] it’s bringing them on to an exercise level where they’re able to look after themselves properly including going to do the shopping and having a social life.”

Prof Jeremy Pearson, associate medical director at the British Heart Foundation, said: “The results of this trial will determine if this experimental procedure is safe.

“If the trial is successful, there will be further use of the technology as surgeons gain expertise in the technique. As more people are treated with this procedure, it will become fully clear whether it will have a real benefit for patients.”

Scientists come closer to ‘mending broken hearts’ by using gene therapy to … – The Independent


Scientists have come a step closer to being able to repair the damage done by heart attacks, using a “cocktail of genes” to transform scar tissue into working heart muscles.

Novel techniques to “mend broken hearts” using gene therapy and stem cells represent a major new frontier in the treatment of heart disease.

In the latest breakthrough, achieved by researchers at the Gladstone Institute of Cardiovascular Disease in California, researchers were able to re-programme scar-forming cells into heart muscle cells, some of which were capable of transmitting the kind of electrical signals that make the heart beat, according to the latest issue of the Stem Cell Reports journal.

The same team demonstrated their technique last year in live mice, transforming scar-forming cells, called fibroblasts, into beating heart muscle cells, but this is the first time that human fibroblasts have been re-programmed in this way.

So far, the work with human fibroblasts has only been done in the lab, but it paves the way for new treatments for heart attack victims. Researchers said that the “cocktail of genes” used to regenerate cells could one day be replaced with “small drug-like molecules” that would offer safer and easier delivery.

“We’ve now laid a solid foundation for developing a way to reverse the damage [done by a heart attack] —something previously thought impossible — and changing the way that doctors may treat heart attacks in the future,” said Dr Deepak Srivastava, director of cardiovascular disease at the Gladstone Institutes. “…Our findings here serve as a proof of concept that human fibroblasts can be re-programmed successfully into beating heart cells.”

In 2012, Dr Srivastava and his team reported in the journal Nature that, by injecting three genes into the hearts of live mice that had been damaged by heart attack, fibroblasts could be turned into working heart cells.

The scientists attempted the same technique using human fibroblasts from foetal heart cells, embryonic stem cells and neonatal skin cells, injected with genes in petri dishes in the lab. An increased number of genes was required to transform the human cells, and the efficiency of the transformed cells was low, but the team were encouraged by the results.

“While almost all the cells in our study exhibited at least a partial transformation, about 20 per cent of them were capable of transmitting electrical signals – a key feature of beating hearts,” said Gladstone staff scientist Ji-dong Fu, the study’s lead author.

The number of people who survive heart attacks has increased considerably in recent decades. The British Heart Foundation (BHF) said earlier this year that 70 per cent of women and 68 per cent of men were now surviving. However, success in keeping people alive after a heart attack has led to a rise in the number of people suffering from the long-term after-effects, which include debilitating heart failure.

Heart failure occurs when the heart cannot function efficiently and can be caused by the damage done to the heart muscle during heart attack. More than 750,000 people in the UK suffer from heart failure.

Professor Jeremy Pearson, Associate Medical Director at the British Heart Foundation, said: “This research represents a small but significant step forward.  Last year these scientists had a real breakthrough when they turned fibroblasts – the cells that form scarred heart tissue – in the hearts of mice into beating heart cells, by injecting them with a ‘cocktail’ of different genes.

“Now, using a different combination of genes, they have managed to turn human fibroblasts into beating heart cells in a culture dish. This process is still a long way from the clinic, but advances like this bring us closer to the likelihood that we could one day use these techniques to mend human hearts.”

Source: Independent.uk