Pulmonary hypertension in β thalassaemia.


Pulmonary hypertension is one of the leading causes of morbidity and mortality in patients with haemolytic disorders and is a frequent finding in echocardiographic screening of patients with β thalassaemia. Substantial progress has been made in understanding of the multifactorial pathophysiology of pulmonary hypertension in β thalassaemia. Haemolysis, reduced nitric oxide bioavailability, iron overload, and hypercoagulopathy are among the main pathogenetic mechanisms. Various disease-directed therapeutic methods, such as transfusion, chelation, and splenectomy, have important roles in the development of pulmonary hypertension in β thalassaemia. Studies investigating the prevalence of pulmonary hypertension in β thalassaemia are mostly based on echocardiographic findings, and are thus limited by the scarcity of information derived from right heart catheterisation. Invasive pulmonary haemodynamic data are needed to clarify the true prevalence of pulmonary hypertension in β thalassaemia, to better understand the underlying pathophysiology and risk factors, and to define the optimum therapy for this devastating complication.

Source: Lancet

Riociguat for the Treatment of Chronic Thromboembolic Pulmonary Hypertension.


BACKGROUND

Riociguat, a member of a new class of compounds (soluble guanylate cyclase stimulators), has been shown in previous clinical studies to be beneficial in the treatment of chronic thromboembolic pulmonary hypertension.

METHODS

In this phase 3, multicenter, randomized, double-blind, placebo-controlled study, we randomly assigned 261 patients with inoperable chronic thromboembolic pulmonary hypertension or persistent or recurrent pulmonary hypertension after pulmonary endarterectomy to receive placebo or riociguat. The primary end point was the change from baseline to the end of week 16 in the distance walked in 6 minutes. Secondary end points included changes from baseline in pulmonary vascular resistance, N-terminal pro–brain natriuretic peptide (NT-proBNP) level, World Health Organization (WHO) functional class, time to clinical worsening, Borg dyspnea score, quality-of-life variables, and safety.

RESULTS

By week 16, the 6-minute walk distance had increased by a mean of 39 m in the riociguat group, as compared with a mean decrease of 6 m in the placebo group (least-squares mean difference, 46 m; 95% confidence interval [CI], 25 to 67; P<0.001). Pulmonary vascular resistance decreased by 226 dyn·sec·cm–5 in the riociguat group and increased by 23 dyn·sec·cm–5 in the placebo group (least-squares mean difference, –246 dyn·sec·cm–5; 95% CI, –303 to –190; P<0.001). Riociguat was also associated with significant improvements in the NT-proBNP level (P<0.001) and WHO functional class (P=0.003). The most common serious adverse events were right ventricular failure (in 3% of patients in each group) and syncope (in 2% of the riociguat group and in 3% of the placebo group).

CONCLUSIONS

Riociguat significantly improved exercise capacity and pulmonary vascular resistance in patients with chronic thromboembolic pulmonary hypertension.

Source: NEJM

 

Riociguat for the Treatment of Chronic Thromboembolic Pulmonary Hypertension.


BACKGROUND

Riociguat, a member of a new class of compounds (soluble guanylate cyclase stimulators), has been shown in previous clinical studies to be beneficial in the treatment of chronic thromboembolic pulmonary hypertension.

METHODS

In this phase 3, multicenter, randomized, double-blind, placebo-controlled study, we randomly assigned 261 patients with inoperable chronic thromboembolic pulmonary hypertension or persistent or recurrent pulmonary hypertension after pulmonary endarterectomy to receive placebo or riociguat. The primary end point was the change from baseline to the end of week 16 in the distance walked in 6 minutes. Secondary end points included changes from baseline in pulmonary vascular resistance, N-terminal pro–brain natriuretic peptide (NT-proBNP) level, World Health Organization (WHO) functional class, time to clinical worsening, Borg dyspnea score, quality-of-life variables, and safety.

RESULTS

By week 16, the 6-minute walk distance had increased by a mean of 39 m in the riociguat group, as compared with a mean decrease of 6 m in the placebo group (least-squares mean difference, 46 m; 95% confidence interval [CI], 25 to 67; P<0.001). Pulmonary vascular resistance decreased by 226 dyn·sec·cm–5 in the riociguat group and increased by 23 dyn·sec·cm–5 in the placebo group (least-squares mean difference, –246 dyn·sec·cm–5; 95% CI, –303 to –190; P<0.001). Riociguat was also associated with significant improvements in the NT-proBNP level (P<0.001) and WHO functional class (P=0.003). The most common serious adverse events were right ventricular failure (in 3% of patients in each group) and syncope (in 2% of the riociguat group and in 3% of the placebo group).

CONCLUSIONS

Riociguat significantly improved exercise capacity and pulmonary vascular resistance in patients with chronic thromboembolic pulmonary hypertension.

Source: NEJM