Probing the mysteries of neutron stars with a surprising earthly analog


Ever since neutron stars were discovered, researchers have been using their unusual properties to probe our universe. The superdense remnants of stellar explosions, neutron stars pack a mass greater than the Sun’s into a ball about as wide as San Francisco. A single cup of this star matter would weigh about as much as Mount Everest.

These odd celestial bodies could alert us to distant disturbances in the fabric of spacetime, teach us about the formation of elements, and unlock the secrets of how gravity and particle physics work in some of the most extreme conditions in the universe.

“They’re at the center of a lot of open questions in astronomy and astrophysics,” says astrophysicist Vanessa Graber of the Institute of Space Sciences in Barcelona.

But to accurately interpret some of the neutron stars’ signals, researchers must first understand what goes on inside them. They have their hunches, but experimenting directly on a neutron star is out of the question. So scientists need another way to test their theories. The behavior of matter in such a superdense object is so complicated that even computer simulations aren’t up to the task. But researchers think they may have found a solution: an earthly analog.

Though young neutron stars can have temperatures in the millions of degrees in their interior, by one important energetic measure neutrons are considered “cold.” Physicists think that is a characteristic they can exploit to study the inner workings of neutron stars. Instead of looking to the sky, researchers are peering into clouds of ultracold atoms created in laboratories here on Earth. And that might help them finally answer some longstanding questions about these enigmatic objects.

Space oddities

The existence of neutron stars was first proposed in 1934, two years after the discovery of the neutron itself, when astronomers Walter Baade and Fritz Zwicky wondered if a celestial body made entirely of neutrons might remain after a supernova explosion. Though they didn’t get all the details right, their general idea is now widely accepted.

Stars power themselves by fusing the nuclei of lighter atoms into those of heavier atoms. But when stars run out of those lighter atoms, nuclear fusion stops and there is no longer an outward pressure to fight against the inward force of gravity. The core collapses and the star’s outer layer races inward. When this layer hits the dense core, it bounces off and explodes outward, producing a supernova. The dense core that remains afterward is a neutron star.

A composite, falsely colored image shows a small white sphere shooting a filament of white from its center. Surrounded by concentric rings of white gases, blue and purple clouds emanate and twist into the dark sky around it.
The remains of a supernova witnessed in the year 1054, the Crab Nebula contains a rapidly spinning neutron star known as a pulsar.

It wasn’t until the 1960s that Zwicky and Baade’s hypothetical neutron stars were finally detected. Radio astronomer Jocelyn Bell Burnell noticed a strange, regularly pulsed radio wave signal from space while working as a graduate student at the University of Cambridge. She was detecting something that had never been seen before: a special kind of neutron star called a pulsar, which flashes beams of radiation at regular intervals as it spins, like a lighthouse. (Her adviser, along with the director of the observatory — but not Bell Burnell — later received the Nobel Prize for the discovery.)

Since then, thousands of neutron stars have been detected. As some of the densest, highest-pressure objects in the universe, neutron stars might help us learn about what happens to matter at extremely high densities. Understanding their structure and the behavior of the neutron matter composing them is of paramount importance to physicists.

Scientists already know that the neutrons, protons and other subatomic particles that compose a neutron star arrange themselves differently depending on where in the star they are. In certain sections, they pack rigidly like water molecules in a block of ice. In others, they flow and swirl like a frictionless fluid. But exactly where the transition happens and how the different phases of matter behave, physicists aren’t sure.

A superdense star born of a nuclear fireball seems, on its face, to have very little in common with a dilute cloud of ultracold particles. But they can share at least one useful characteristic: They are both below a threshold known as the Fermi temperature that depends on — and is calculated based on — the matter each system is made of. A system that is well above this temperature will largely behave according to the laws of classical physics; if it is well below, its behavior will be ruled by quantum mechanics. Certain ultracold gases and neutron star material can both be well below their Fermi temperatures and consequently can act in similar ways, says Christopher Pethick, a theoretical physicist at the Niels Bohr Institute in Copenhagen and coauthor of an early overview of neutron stars in the 1975 Annual Review of Nuclear Science.

This animation of a pulsar shows how, much like a lighthouse, pulsars flash beams of light at regular intervals as they spin.

Matter that is below its Fermi temperature can obey remarkably universal laws. This universality means that, while we don’t have easy access to several-million-degree neutron star matter, we could learn about some of its behavior by experimenting with ultracold gases that can be created and manipulated in laboratory vacuum chambers on Earth, says theoretical astrophysicist James Lattimer of Stony Brook University in New York, author of a summary of the science of nuclear matter in the 2012 Annual Review of Nuclear and Particle Science.

Of particular interest to Lattimer is a theoretical state called a unitary gas. A gas is unitary when each of its particles’ sphere of influence becomes infinite, meaning that they would influence each other no matter how far apart they are. This is impossible to have in reality, but ultracold atom clouds can get close — and so can the matter inside of neutron stars. “It’s similar to a unitary gas,” Lattimer says, “but it’s not a perfect unitary gas.”

Down to Earth

For a long time, the exact relationship between a gas’s pressure and its density was simply too complex to accurately calculate. But when experimental physicists developed the ability to control clouds of cold atoms and tune them to get very, very close to a unitary gas, this opened a new avenue to determining such a gas’s properties: Simply measure it directly, instead of struggling to wrangle the unwieldy math on a computer.

These ultracold atom clouds are actually closer to being a unitary gas than neutron star matter, so the analogy isn’t perfect. But it’s close enough that Lattimer has been able to take almost-unitary-gas measurements from the cold-atom clouds and apply them to neutron matter to refine some of the theoretical models that describe the internal workings of neutron stars. And experiments with cold atoms can help scientists develop theories about what physics might be at play in some unexplained neutron star phenomena.

In particular, Graber and other scientists are hoping to find clues to one of the biggest mysteries, called pulsar glitches. Generally, the regularly timed ticking of a pulsar “clock” is so reliable that its accuracy rivals that of atomic clocks. But not always: Sometimes, the pulsar’s rate of rotation increases abruptly, causing a glitch. Where that extra oomph comes from is unclear. The answer lies with how that matter moves around inside a neutron star.

Both cold gases and neutron matter in some parts of a neutron star are superfluids — the particles flow without any friction. When a superfluid rotates, little whirlpools, or vortices, develop. How exactly these vortices move and interact with one another and other structures inside a rotating neutron star is still an open question. “It’s probably not this nice, regular lattice of vortices,” says Michael McNeil Forbes, who studies theoretical physics at Washington State University in Pullman. “It might be some tangle of vortices that’s in the entire star. We don’t know.”

Forbes and others suspect that the glitches they observe in the rotation of pulsars have something to do with how these vortices get “pinned” to structures in the star. Generally, a single vortex meanders freely around a fluid. But when the fluid contains a rigidly packed area of matter that obstructs the vortex’s motion, the vortex will stop and sometimes even wrap its swirling arms around the rigid object and position itself so that its center is right on top of it.

Eight microscopic images show a series of white circles with many dark flecks arranged within them. The largest nearly fills the field of view, and the dark spots appear somewhat blurry. In the series, the circles decrease in size and corresponding number of dark spots, which appear more regularly arranged in some of the views.
Superfluid vortices are found in both neutron stars and clouds of cold atoms. Physicists study these in cold atoms using laser light and magnetic traps to manipulate the clouds. Here, scientists studied the formation and decay of vortices (dark spots) in cold-atom clouds over increasing amounts of time (from 25 milliseconds, upper left, to 40 seconds, lower right). Additional studies look at what happens when such vortices move or interact.

Vortices tend to stay pinned in this way, but sometimes they can unpin and migrate away from the object. When this happens, the flow of fluid exerts a torque on the object. If hundreds of thousands of vortices unpin from various structures in a neutron star all at once, they can suddenly speed up the star’s rotation. Forbes explains how so many vortices might all unpin at once: “Like dropping sand onto a sand pile — nothing really happens until … you get a whole avalanche.”

But it’s almost impossible for classical computers to exactly calculate all the intricacies of the dance of so many vortices at once. So Forbes plans to team up with experimental groups that can form these vortices in their clouds of cold atoms and see what happens. The idea is to use “cold atom experiments as analog quantum computers for calculating stuff that we can’t do any other way,” he says.

Researchers are busy examining how other ultracold phenomena they regularly see in the lab can inspire new lines of research into the behavior of neutron stars. Recently, Graber and her colleagues outlined so many possibilities that they needed 125 pages to publish them all. In 2019, dozens of astronomers, nuclear physicists and ultracold atomic physicists from around the world gathered to discuss more of the surprising connections between their fields. Researchers are just beginning to test some of the ideas generated by these brainstorms.

They’re also learning more from the stars themselves, says Pethick. “It’s an exciting field, because at the moment there are a lot of observations coming in.”

With better telescopes and new methods to glean properties about a neutron star’s inscrutable interior, scientists can hope to find out just how far this analogy between cold atoms and neutron stars can be taken.

Scientists have found a bizarre similarity between human cells and neutron stars.


If you were to compare yourself to a neutron star, you probably wouldn’t find very many things in common. After all, neutron stars – celestial bodies with super strong magnetic fields – are made from collapsed star cores, lie light-years away from Earth, and don’t even watch Netflix.

But, according to new research, we share at least one similarity: the geometry of the matter that makes us.

Researchers have found that the ‘crust’ (or outer layers) of a neutron star has the same shape as our cellular membranes. This could mean that, despite being fundamentally different, both humans and neutron stars are constrained by the same geometry.

“Seeing very similar shapes in such strikingly different systems suggests that the energy of a system may depend on its shape in a simple and universal way,” said one of the researchers, astrophysicist Charles Horowitz, from Indiana University, Bloomington.

To understand this finding, we need to quickly dive into the weird world of nuclear matter, which researchers call ‘nuclear pasta’ because it looks a lot like spaghetti and lasagne. See for yourself:

NuclearPasta

D. K. Berry et al.

This nuclear pasta forms in the dense crust of a neutron star thanks to long-range repulsive forces competing with something called the strong force, which is the force that binds quarks together.

In other words, two powerful forces are working against one another, forcing the matter – which consists of various particles – to structure itself in a scaffold-like (pasta) way.

As one of the team, Greg Huber, a biological physicist from the University of California, Santa Barbara, explains:

“When you have a dense collection of protons and neutrons like you do on the surface of a neutron star, the strong nuclear force and the electromagnetic forces conspire to give you phases of matter you wouldn’t be able to predict if you had just looked at those forces operating on small collections of neutrons and protons.”

Now, it turns out that these pasta-like structures look a lot like the structures inside biological cells, even though they are vastly different.

This odd similarity was first discovered in 2014, when Huber was studying the unique shapes on our endoplasmic reticulum (ER) – the little organelle in our cells that makes proteins and lipids.

At first, Huber thought that these structures on the ER – which he called “parking garages”, or more formally, Terasaki ramps – were something that only happened inside soft matter.

But the he saw Horowitz’s models of neutron stars, and was surprised to find that the structures of the ER looked a heck of a lot like the structures inside neutron stars.

“I called Chuck [Horowitz] and asked if he was aware that we had seen these structures in cells and had come up with a model for them,” Huber said. “It was news to him, so I realised then that there could be some fruitful interaction.”

You can see the ER structures (left) compared to the neutron stars (right) below:

NeutronStars

The discovery brought both of the scientists together to compare and contrast the differences between the structures, such as the conditions required for them to form.

Normally, matter is characterised by a phase – sometimes called its state – such as gas, solid, liquid Different phases are usually influenced by a plethora of various conditions, like how hot the matter is, how much pressure it’s under, and how dense it is.

These factors change wildly between soft matter (the stuff inside cells) and neutron stars (nuclear matter). After all, neutron stars form after supernovae explosions, and cells form within living things. With that in mind, it’s quite easy to see that the two things are very different.

“For neutron stars, the strong nuclear force and the electromagnetic force create what is fundamentally a quantum mechanical problem,” Huber said.

“In the interior of cells, the forces that hold together membranes are fundamentally entropic and have to do with the minimisation of the overall free energy of the system. At first glance, these couldn’t be more different.”

While the similarity is cool, and makes us feel connected to the cosmos in a strange way, the differences signify the importance of the discovery, because they hint that two very different things – cells and neutron stars – might be guided by the same geometric rules that we’re only just beginning to understand.

It will take further research to really figure out what’s going on here, but it’s a starting point that could help us understand something fundamental about how matter is structured, and we’re excited to see where that leads.

Crazy-Dense Neutron Stars Reveal Their Secrets.


Scientists have uncovered a new key to understanding the strange workings of neutron stars — objects so dense they pack the mass of multiple suns into a space smaller than a city.

It turns out there is a universal relationship linking a trio of properties related to how fast the star spins and how easily its shape deforms. This relationship could help astronomers understand the physics inside neutron stars’ cores, and distinguish these stars from their even weirder cousins, quark stars.

neutron-star-creation-illustration-2

Neutron stars are born when massive stars run out of fuel for nuclear fusion and collapse. They expel their outer layers, and their cores fall inward under the pull of gravity to become denser and denser. Eventually, the pressure is so great that even atoms cannot retain their structure, and they collapse. Protons and electrons essentially melt into each other, producing neutrons as well as lightweight particles called neutrinos. The end result is a star whose mass is 90percent neutrons. [Graphic: Inside a Neutron Star]

Quark stars are bizarre theorized objects that are even denser than neutron stars, where even neutrons can’t survive and they melt down into theirconstituent quarks.

“Quark stars haven’t been observed,” said Nicolas Yunes, a physicist at Montana State University who co-authored the new study with his Montana State colleague Kent Yagi. Their paper was published online today (July 25) in the journal Science.

Part of the problem is that scientists can’t definitively tell the difference between neutron stars and quark stars from current observations, so some of the known neutron stars might actually be quark stars. However, the new relationship found by Yagi and Yunes could help distinguish the two super-dense bodies.

The researchers discovered that for all neutron stars there is a relationship between three quantities: a star’smoment of inertia, which defines how quickly it can spin, and its Love number and quadrupolemoment, which reflect how easily the star’s shape deforms. The newfound relationship means that if one of these quantities can be measured, the others can be deduced.

Though scientists previously understood that these properties were connected, they didn’t realize that such a standard relationship held true. It turns out to be similar to a relationship known for black holes, which are even denser than neutron and quark stars.

“For black holes there is a well-known definite relation, but that made sense because black holes don’t have internal structure,” Yunes told SPACE.com. “We all expected that that wouldn’t be true once you have objects that do have structure.”

Understanding this relationship for neutron stars could also help scientists study general relativity and the laws of physics in a strong gravitational field.

“Since a neutron star is very compact, it offers us a nice test-bed to probe gravitational theory in the strong-field regime,” Yagi told SPACE.com via email. Previously, uncertainties about the internal structure of neutron starsprevented researchers from carrying out such tests, he added.

“However, since our universal relations do not depend on the neutron star internal structure, one can perform general relativity tests without being affected by the ignorance of the internal structure,” Yagi said.

Watch the pics.

 http://www.space.com/22078-inside-neutron-stars-graphic.html?cmpid=51463010138234

Source: space.com