Multimodal neuro-nanotechnology: Challenging the existing paradigm in glioblastoma therapy


Abstract

Integrating multimodal neuro- and nanotechnology-enabled precision immunotherapies with extant systemic immunotherapies may finally provide a significant breakthrough for combatting glioblastoma (GBM). The potency of this approach lies in its ability to train the immune system to efficiently identify and eradicate cancer cells, thereby creating anti-tumor immune memory while minimizing multi-mechanistic immune suppression. A critical aspect of these therapies is the controlled, spatiotemporal delivery of structurally defined nanotherapeutics into the GBM tumor microenvironment (TME). Architectures such as spherical nucleic acids or poly(beta-amino ester)/dendrimer-based nanoparticles have shown promising results in preclinical models due to their multivalency and abilities to activate antigen-presenting cells and prime antigen-specific T cells. These nanostructures also permit systematic variation to optimize their distribution, TME accumulation, cellular uptake, and overall immunostimulatory effects. Delving deeper into the relationships between nanotherapeutic structures and their performance will accelerate nano-drug development and pave the way for the rapid clinical translation of advanced nanomedicines. In addition, the efficacy of nanotechnology-based immunotherapies may be enhanced when integrated with emerging precision surgical techniques, such as laser interstitial thermal therapy, and when combined with systemic immunotherapies, particularly inhibitors of immune-mediated checkpoints and immunosuppressive adenosine signaling. In this perspective, we highlight the potential of emerging treatment modalities, combining advances in biomedical engineering and neurotechnology development with existing immunotherapies to overcome treatment resistance and transform the management of GBM. We conclude with a call to action for researchers to leverage these technologies and accelerate their translation into the clinic.

The Inner Light: Nanotechnology Reveals Density of Tumors


Cellular sphere that is purple and lit throughout by yellow-orange light.
Carbon nanotubes that have infiltrated a tumor give off light indicating the tumor’s permeability, which can be a critical factor in how well cancer drugs will work.

Summary

Tumor permeability can be a critical factor in how well a cancer therapy works. MSK researchers developed a method to measure this by creating living tumor spheroids and infiltrating them with very small carbon nanotubes that give off infrared light. The more light the tumor emits, the more permeable and potentially treatable it is.

Highlights

  • Tumor permeability affects how well cancer drugs work.
  • A new method developed at MSK measures permeability of living tumors.
  • The technique uses tiny carbon nanotubes that emit light.
  • This approach could screen drugs that enhance tumor permeability.

The above image, generated by the lab of Memorial Sloan Kettering pharmacologist Daniel Heller, shows a 3-D breast cancer tumor spheroid — a clump of human cells grown in a flask — that has been infiltrated by carbon nanotubes. These tiny, needle-like particles are about one nanometer (a millionth of a millimeter) thick.

The nanotubes give off light that reveals how permeable, or porous, the tumor is. This light, of infrared wavelength, is invisible to the eye but easily detectable by a special camera, even deep within tissues.

Tumor permeability can be a critical factor in how well a cancer therapy works. Different tumor types have different levels of permeability, depending on the density of the tumor’s extracellular matrix — a collection of molecules secreted by cells that provides structural and biochemical support. The nanotubes easily pass through a loose matrix but are foiled if it is too dense.

Some tumors are so dense that cancer drugs kill only the cells close to the surface, leaving the bulk of the tumor to thrive.

It could be an important advance in figuring out better ways to get drugs inside a tumor.

Daniel A. Heller pharmacologist

“The drug delivery aspect is often overlooked,” Dr. Heller says. “Sometimes a person is not responding to a drug because it’s not effective, or there is resistance. But sometimes it’s because the drug isn’t getting inside. It’s often hard to tell why it’s not working.”

The new approach of using nanotubes in living tumors exemplifies the immense potential of nanotechnology, an emerging field.

A wide range of nanomaterials are currently being investigated for their capacity to image cancer cells and to ferry drugs directly to tumors while avoiding healthy tissues. But researchers have been disappointed so far by these tools’ lack of clinical effectiveness in patients. One solution may be to figure out better ways to get nanomaterials — and drugs they may carry — deeper inside tumors.

Combining Two Technologies

Yosi Shamay, a research fellow in the Heller lab, created tumor spheroids by putting cancer cells in a plastic flask coated with a substance that prevents the cells from adhering to the sides so they instead stick to each other. The cells grow and clump together to form the spheroids, which resemble tumors found in living organisms.

Biophysicist Prakrit Jena developed a way to see the precise locations of infrared light-emitting carbon nanotubes within a three-dimensional volume. Dr. Heller worked with Dr. Shamay and Dr. Jena to use these carbon nanotubes in the tumor spheroids, creating a powerful new tool that adds another dimension — literally — to the study of cancer.

 “Using conventional techniques, if you wanted to determine tumor porosity, you had to fix the tumor in paraffin, slice it, stain it, and study it under a microscope — it’s two dimensional,” Dr. Heller says. “Now we’ve devised a new method to get a live, real-time look at how well a substance is permeating a tumor.”

In a study reported recently in the journal Carbon, Dr. Heller’s lab used this technology to compare the permeability of a breast cancer spheroid with that of a liver cancer spheroid. The nanotubes demonstrated that the liver tumor was much denser, as infrared light was emitted only from its edges because the nanotubes could not penetrate deeply.

Purple cellular sphere lit on the rim with yellow light.
Light confined to the edges indicates that the carbon nanotubes cannot penetrate far into the dense liver tumor.

When the researchers looked at the surface of both tumors under an electron microscope, they saw differences in extracellular matrix density that correlated with the extent of nanotube penetration — confirming that the amount of light emitted from inside the spheroids is a reliable indicator of the density of the matrix.  

“We’re trying to make tumor spheroids for every cancer we can get our hands on to see how they behave,” Dr. Heller says.

Not only could this system shed light on tumor biology, it also could be used to screen for drugs that enhance tumor permeability. And the potential applications don’t end there.

“In addition to evaluating nanotubes and other nanomaterials, this is also a good method for studying penetration of other types of therapies, such as antibodies or viruses that target cancer,” Dr. Heller explains.

He says the technology might next be used to noninvasively peek inside a live tumor in a mouse.

“If we can take this into a mouse, and possibly one day into humans, it could be an important advance in figuring out better ways to get drugs inside a tumor,” he says. “This could be especially important for treating difficult cancers, which resist treatment even when detected early.”

Hacking Metastasis: Nanotechnology Researchers Find New Way to Target Tumors


Metastatic tumor in the lung, with different colors used to represent the cell nuclei, the blood vessels, and the P-selectin protein.
This image shows a metastatic melanoma tumor in a lung. Blood vessels at the tumor site (yellow) express a protein called P-selectin. Blood vessels not expressing P-selectin are green. Nanoparticles targeting P-selectin would stop only at the blood vessels that feed the tumor to deliver the drugs.

Summary

A major challenge in cancer treatment is making sure therapies destroy cancer cells without harming normal tissues. MSK researchers who are developing new types of nanotechnology to deliver cancer drugs have found a promising target — a protein called P-selectin that can aid in the formation of metastases. The researchers synthesized nanoparticles filled with cancer drugs to target them directly to metastatic sites.

Highlights

  • Cancer drugs must target tumors without harming normal tissue.
  • Nanoparticles can carry drugs but must go to the correct site.
  • A protein called P-selectin is a promising target.
  • It plays a role in metastasis.

Even as researchers design more-potent cancer therapies, they face a major challenge in making sure the drugs affect tumors specifically without also harming normal cells. This obstacle has thwarted many promising treatments.

Memorial Sloan Kettering molecular pharmacologist Daniel Heller and colleagues have devised a novel strategy for addressing this problem. Rather than aiming directly at cancer cells, they are focusing on targeting a molecule in the blood vessels that feed tumors and using nanotechnology to deliver tiny particles that will stick to the target and unleash their payload of cancer drugs.

The target, a protein called P-selectin, serves as a kind of molecular Velcro for cancer treatments. It is especially prevalent in blood vessels that nourish cancer itself — including metastatic tumors, which cause roughly 90 percent of cancer deaths and are especially hard to treat.

“The ability to target drugs to metastatic tumors would greatly improve their effectiveness and be a major advance for cancer treatments,” says research fellow Yosi Shamay, lead author of a new study describing this method that is featured on the cover of the June 29 issue of Science Translational Medicine.

P-selectin: An Inviting Target for Nanoparticles

Dr. Heller’s laboratory investigates the use of nanoparticles — tiny objects with diameters one thousandth that of a human hair — to carry drugs to tumors. The drugs are encapsulated within the nanoparticles, which must home in on a target within or near tumors to deliver the therapies effectively.

P-selectin emerged as an especially good target for cancer-focused nanoparticles because in addition to being found in tumor blood vessels, the molecule aids in the formation of metastases. When cancer cells leave a primary tumor and circulate in the blood, the cells can adhere to P-selectin, exit the blood vessel, and form a new tumor. 

The ability to target drugs to metastatic tumors would greatly improve their effectiveness.

Yosef Shamay research fellow


“We know that cancer cells can come into contact with P-selectin to begin the formation of metastatic tumors,” Dr. Heller says. “So in effect, we’re hacking into the metastatic process in order to intercept the cells and destroy the cancer with drug-loaded nanoparticles.”

Exploring the Promise of Nanomedicine

Dr. Shamay made the nanoparticles out of a very abundant and cheap substance called fucoidan, which is extracted from brown algae that grows in the ocean. Fucoidan has a natural affinity for P-selectin, so the nanoparticle is simple to make and adapt.

“It’s difficult to develop a nanoparticle-based treatment that is effective and safe in lots of people,” Dr. Heller says. “You usually have to load both the drug and another component to the nanoparticle to enable the nanoparticle to bind to the correct spot — and any new element carries the potential to be toxic. But in this case, the nanoparticle itself is made of material that naturally attaches to the target.”

“Just by targeting the tumor blood vessels, we found that the drug is going to the tumor itself and killing cancer cells directly,” Dr. Heller says. “This makes the drugs delivered through this process work even better than we expected.”

Even when the tumor blood vessels don’t express P-selectin, the researchers could use radiation to trigger the expression of that protein in the tumor area before administering the nanoparticles. In collaboration with MSK radiation biologist Adriana Haimovitz-Friedman, they found that radiotherapy ensured that enough P-selectin was expressed for the nanoparticles to adhere to and deliver the therapy to the tumor.

We’re hacking into the metastatic process in order to … destroy the cancer.

Daniel A. Heller molecular pharmacologist

The researchers conducted experiments showing that the nanoparticles selectively attached to cancer sites, including metastatic tumors, in the lungs of mice. The nanoparticles were filled with different cancer drugs, including chemotherapies and newer precision medicines that target specific molecules in cancer cells.

“We demonstrated that the drugs were more effective when administered within the nanoparticles than when given alone,” Dr. Heller says. “We were able to give lower doses, which reduced the side effects.”

In collaboration with the laboratory of MSK Physician-in-Chief José Baselga and cancer biologist Maurizio Scaltriti, Dr. Heller’s lab used the nanoparticles to deliver a type of targeted therapy known as a MEK inhibitor, which has shown promise in several cancers. With this method, the MEK inhibitors were more effective against the tumors without causing the serious side effects, such as skin rashes, that have hampered many treatments.

“The clinical potential of nanomedicines for cancer has not been fulfilled, but targeting P-selectin with these nanoparticles is an approach that seems to be broadly useful for all kinds of drugs,” Dr. Heller says.

“This approach requires further in-depth testing, including clinical trials, but we are really excited about its promise.”

Researchers create first functional semiconductor made from graphene


Researchers at the Georgia Institute of Technology have created the world’s first functional semiconductor made from graphene, a single sheet of carbon atoms held together by the strongest bonds known. Semiconductors, which are materials that conduct electricity under specific conditions, are foundational components of electronic devices. The team’s breakthrough throws open the door to a new way of doing electronics.

Their discovery comes at a time when silicon, the material from which nearly all modern electronics are made, is reaching its limit in the face of increasingly faster computing and smaller electronic devices.

Walter de Heer, Regents’ Professor of physics at Georgia Tech, led a team of researchers based in Atlanta, Georgia, and Tianjin, China, to produce a graphene semiconductor that is compatible with conventional microelectronics processing methods—a necessity for any viable alternative to silicon.

In this latest research, published in Nature, de Heer and his team overcame the paramount hurdle that has been plaguing graphene research for decades, and the reason why many thought graphene electronics would never work. Known as the “band gap,” it is a crucial electronic property that allows semiconductors to switch on and off. Graphene didn’t have a band gap—until now.

“We now have an extremely robust graphene semiconductor with 10 times the mobility of silicon, and which also has unique properties not available in silicon,” de Heer said. “But the story of our work for the past 10 years has been, ‘Can we get this material to be good enough to work?'”

A new type of semiconductor

De Heer started to explore carbon-based materials as potential semiconductors early in his career, and then made the switch to exploring two-dimensional graphene in 2001. He knew then that graphene had potential for electronics.

https://www.youtube.com/embed/gWUX2OTqkEo?color=white Credit: Georgia Institute of Technology

“We were motivated by the hope of introducing three special properties of graphene into electronics,” he said. “It’s an extremely robust material, one that can handle very large currents, and can do so without heating up and falling apart.”

De Heer achieved a breakthrough when he and his team figured out how to grow graphene on silicon carbide wafers using special furnaces. They produced epitaxial graphene, which is a single layer that grows on a crystal face of the silicon carbide. The team found that when it was made properly, the epitaxial graphene chemically bonded to the silicon carbide and started to show semiconducting properties.

Over the next decade, they persisted in perfecting the material at Georgia Tech and later in collaboration with colleagues at the Tianjin International Center for Nanoparticles and Nanosystems at Tianjin University in China. De Heer founded the center in 2014 with Lei Ma, the center’s director and a co-author of the paper.

How they did it

In its natural form, graphene is neither a semiconductor nor a metal, but a semimetal. A band gap is a material that can be turned on and off when an electric field is applied to it, which is how all transistors and silicon electronics work. The major question in graphene electronics research was how to switch it on and off so it can work like silicon.

But to make a functional transistor, a semiconducting material must be greatly manipulated, which can damage its properties. To prove that their platform could function as a viable semiconductor, the team needed to measure its electronic properties without damaging it.

They put atoms on the graphene that “donate” electrons to the system—a technique called doping, used to see whether the material was a good conductor. It worked without damaging the material or its properties.

The team’s measurements showed that their graphene semiconductor has 10 times greater mobility than silicon. In other words, the electrons move with very low resistance, which, in electronics, translates to faster computing. “It’s like driving on a gravel road versus driving on a freeway,” de Heer said. “It’s more efficient, it doesn’t heat up as much, and it allows for higher speeds so that the electrons can move faster.”

The team’s product is currently the only two-dimensional semiconductor that has all the necessary properties to be used in nanoelectronics, and its electrical properties are far superior to any other 2D semiconductors currently in development.

“A long-standing problem in graphene electronics is that graphene didn’t have the right band gap and couldn’t switch on and off at the correct ratio,” said Ma. “Over the years, many have tried to address this with a variety of methods. Our technology achieves the band gap, and is a crucial step in realizing graphene-based electronics.”

Moving forward

Epitaxial graphene could cause a paradigm shift in the field of electronics and allow for completely new technologies that take advantage of its unique properties. The material allows the quantum mechanical wave properties of electrons to be utilized, which is a requirement for quantum computing.

“Our motivation for doing graphene electronics has been there for a long time, and the rest was just making it happen,” de Heer said. “We had to learn how to treat the material, how to make it better and better, and finally how to measure the properties. That took a very, very long time.”

According to de Heer, it is not unusual to see yet another generation of electronics on its way. Before silicon, there were vacuum tubes, and before that, there were wires and telegraphs. Silicon is one of many steps in the history of electronics, and the next step could be graphene.

“To me, this is like a Wright brothers moment,” de Heer said. “They built a plane that could fly 300 feet through the air. But the skeptics asked why the world would need flight when it already had fast trains and boats. But they persisted, and it was the beginning of a technology that can take people across oceans.”

Nanotechnology-based disinfectants and sensors for SARS-CoV-2


Nanotechnology-based antimicrobial and antiviral formulations can prevent SARS-CoV-2 viral dissemination, and highly sensitive biosensors and detection platforms may contribute to the detection and diagnosis of COVID-19.

One thing we have learned so far amid the current coronavirus disease 2019 (COVID-19) pandemic is the degree to which we are limited in our fight against respiratory viral diseases. Up to now SARS-CoV-2 has spread to over 215 countries, with more than 15,000,000 people infected, and over 615,000 deaths to date (Johns Hopkins University Coronavirus Resource Center, 21 July 2020). Our most important line of defence is our own immune system, however people who are immunocompromized, or people with at least one underlying co-morbidity (that is, cardiovascular diseases/hypertension and diabetes, and other chronic underlying conditions), are highly vulnerable and their sole line of defence is sanitizers, face masks, immune system boosters and drugs that are clinically approved1. Scientists around the world have made promising strides towards developing approaches to prevent COVID-192. However, there are still challenges for the development of therapeutics or vaccines, such as regulatory issues, large-scale production and deployment to the public3. It will take months before we can have a global answer to this pandemic. Furthermore, we must be prepared for potential outbreak of a second and even a third wave of the virus, which calls for alternative options to reinforce our arsenal against not only COVID-19 but also other viral diseases that can potentially become pandemics. The silver lining amidst this crisis is the state of our technological advances mainly in the field of nanotechnology. So far, a significant body of work has covered the development of nano-based vaccines or anti-viral agents to block SARS-CoV-2, all of which are currently far from public implementation due to lengthy and strict regulatory affairs4.

Consequently, we propose that nanotechnology could have a closer impact on the current pandemic when implemented in two defined areas: (1) Viral disinfectants, by developing highly effective nano-based antimicrobial and antiviral formulations that are not only suitable for disinfecting air and surfaces, but are also effective in reinforcing personal protective equipment such as facial respirators. (2) Viral detection, by developing highly sensitive and accurate nano-based sensors that allow early diagnosis of COVID-19.

Viral disinfectants

Considering various transmission routes of coronavirus (that is, via cough or respiratory droplets, or biofluids)5, one approach to fight against the virus is through preventing its dissemination by means of disinfecting air, skin or surrounding surfaces (Fig. 1).

figure 1
Fig. 1: Nanotechnology-based viral disinfectants work against SARS-CoV-2 by preventing viral dissemination on air, surfaces and protective equipment.

To this end, chemical disinfectants (such as chlorines, peroxides, quaternary amines and alcohols) effective against a wide variety of pathogens have been used for disinfection and sterilization of personal protective equipment and surfaces6. Despite promising results from chemical disinfectants, they are often associated with drawbacks such as high concentration requirements for 100% viral inhibition, limited effectiveness over time, and possible risks to public health and environment7,8. Consequently, metallic nanoparticles (for example, silver, copper, titanium dioxide nanoparticles) have been proposed as alternatives due to their inherent broad range antiviral activities, persistence and ability to be effective at much lower dosage9,10. For instance, preliminary evaluations showed that silver nanocluster/silica composite coating on facial masks had viricidal effects against SARS-CoV-211. In another example, NanoTechSurface, Italy, developed a durable and self-sterilizing formula comprised of titanium dioxide and silver ions for disinfecting surfaces12. In a similar manner, FN Nano Inc., USA, developed a photocatalytic coating (light mediated) based on titanium dioxide nanoparticles, which can decompose organic compounds including viruses on the surface upon exposure to light, damaging the viral membrane12. Nanomaterials can also be incorporated into respiratory face masks to further increase their inhibitory effect13. Scientists from Queensland University of Technology, Australia, have developed a breathable and disposable filter cartridge from cellulose nanofibers, which were capable of filtering particles smaller than 100 nanometres14. Alternatively, owing to high surface-area-to-volume ratio and their unique chemical and physical properties, other nanomaterials (for example, graphene) can be used to adsorb and eliminate SARS-CoV-215. For instance, LIGC Applications Ltd., USA, have made a reusable mask made of microporous conductive graphene foam that allows the trapping of microorganisms and the conduction of electrical charge to destroy them16.

These nanomaterials present an enormous potential as disinfectants against coronavirus, mainly due to unique attributes of nanomaterials including intrinsic anti-viral properties such as reactive oxygen species (ROS) generation and photo-dynamic and photo-thermal capabilities. Also, adverse effects of metallic nanomaterials on human health and the environment can be prevented by using biodegradable nanomaterials (that is, polymeric, lipid-based).

Viral detection

Diagnostics is a critical weapon in the fight against this pandemic, as it is pivotal to isolate infected individuals as early as possible, preventing dissemination17. Several nanotechnology-based approaches for SARS-CoV-2 tagging and detection are being developed (Fig. 2).

figure 2
Fig. 2: Nanotechnology-based sensors for SARS-CoV-2 detection, involved in the development of platforms for viral tagging and nano-diagnostic assays.

Generally, testing kits operate based on detection of antibodies (by enzyme-linked immunosorbent assay, or enzyme-linked immunosorbent assay (ELISA)) or RNA (by polymerase chain reaction, or PCR) associated with the virus (from nasopharyngeal swabs taken from individuals’ noses and throats). This relies on their surface interactions with a complementary detection ligand or strand in the kit18. However, these testing kits are generally associated with problems such as false-negative results, long response times and poor analytical sensitivity19. To this end, due to their extremely large surface-to-volume ratios, nanosized materials can instigate highly efficient surface interactions between the sensor and the analyte, allowing faster and more reliable detection of the virus20. Accordingly, a group of researchers have developed a colloidal gold-based test kit that enables easy conjugation of gold nanoparticles to IgM/IgG antibodies in human serum, plasma and whole blood samples21. However, the targeted IgM/IgG antibodies in this kit were not specific to COVID-19, and as a result in some cases produced false results associated with patients who were suffering from irrelevant infections. Consequently, researchers from the University of Maryland, USA, developed a colorimetric assay based on gold nanoparticles capped with suitably designed thiol-modified DNA antisense oligonucleotides specific for N-gene (nucleocapsid phosphoprotein) of SARS-CoV-2, which were used for diagnosing positive COVID-19 cases within 10 min from the isolated RNA samples22. Such testing kits could potentially produce promising results, however their performance would still be affected by quantity of the viral load. To address this shortcoming, researchers from ETH, Switzerland, have recently reported a unique dual-functional plasmonic biosensor combining the plasmonic photothermal effect and localized surface plasmon resonance (LSPR) sensing transduction to provide an alternative and promising solution for clinical COVID-19 diagnosis23. The two-dimensional gold nano-islands functionalized with complementary DNA receptors provide highly sensitive detection of the selected sequences from SARS-CoV-2 through nucleic acid hybridization. For better sensing performance, thermoplasmonic heat is generated on the same gold nano-islands chip when illuminated at their plasmonic resonance frequency. Remarkably, this dual-functional LSPR biosensor exhibited high selectivity towards the SARS-CoV-2 sequences with a detection limit as low as 0.22 pM. In other work, to achieve rapid and accurate detection of SARS-CoV-2 in clinical samples, researchers from the Korea Basic Science Institute developed an ultra-sensitive field-effect transistor (FET)-based biosensing device24. The sensor was produced by coating graphene sheets of the FET with a specific antibody against SARS-CoV-2 spike protein. The FET device could detect the SARS-CoV-2 spike protein at concentrations of 1.31×10–5 pM in phosphate-buffered saline and 1.31×10–3 pM in clinical transport medium. Remarkably, the device exhibited no measurable cross-reactivity with Middle East respiratory syndrome coronavirus (MERS-CoV) antigen, indicating the extraordinary capability of this sensor to distinguish the SARS-CoV-2 antigen protein from those of MERS-CoV.

Another approach that can be used for SARS-CoV-2 and that was successfully used with MERS-CoV, Mycobacterium tuberculosis and human papillomavirus consists of a paper-based colorimetric sensor for DNA detection based on pyrrolidinyl peptide nucleic acid (acpcPNA)-induced silver nanoparticle aggregation25. Briefly, in the absence of complementary DNA, silver nanoparticles aggregate due their electrostatic interactions with the acpcPNA probe. However, in the presence of target DNA, a DNA–acpcPNA duplex starts to form which leads to dispersion of the silver nanoparticles as a result of electrostatic repulsion, giving rise to a detectable colour change25. The use of aptamers and molecular beacons instead of PNA can also represent a potential alternative.

Other avenue where nanomaterials can contribute to detection of SARS-CoV-2 is the extraction and purification of targeted molecules from biological fluids (blood and nasal/throat samples). Thus, nanomaterials with magnetic properties can be decorated with specific receptors of the virus, leading to attachment of virus molecules to the nanoparticles that will allow their magnetic extraction using an external magnetic field.

In this way nanomaterial-based detection can facilitate faster and more accurate detection of the virus even at early stages of the infection, in large due to versatility of surface modification of nanoparticles.

Outlook

This overview of newly developed nanotechnology-based disinfectants and sensors for SARS-CoV-2 lays out a blueprint for development of more effective sensors and disinfectants that can be implemented for the purpose of detection, and prevention of this and another coronavirus. More advances in nano-based disinfectants are needed to meet the challenges on the front lines of patient care. On the other side, with COVID-19 rapidly spreading and with new foci of infection around the corner, efficient detection is pivotal, and the rule is to diagnose more quickly, easily and broadly. Time is of essence when dealing with pandemics and the two emphasized aspects of nanotechnology are more likely to soon become available to the public, as they are not associated with some of the stricter regulations commonly associated with vaccines. It is essential to shorten patient-specific and community-wide response times to determine who is infected or not and nanotechnology products like the ones described here will also reduce the impact on healthcare workers by providing faster and easy-to-use platforms that do not require special equipment or highly trained personnel. And this is how nanotechnology is taking root against SARS-CoV-2, by promoting exactly the type of wide-ranging, integrated approaches that are essential to control this pandemic outbreak at local, national, and international levels.

A nanoscale arsenal


Nanomaterial design and strategies are at the forefront in developing advanced antiviral and antibacterial therapies.

The world has made tremendous progress in science, technology and medicine since the last epidemic of Spanish flu a century ago; still, our ill-preparedness for a pandemic has forced us to look for better alternatives and strategies. We have already faced several viral outbreaks such as Zika virus, Ebola virus, and swine flu, as well as the long fight against tuberculosis (TB), HIV, and hepatitis C (HCV) in the last century. These experiences have taught us that although microbes and humans have co-existed and interacted with each other, we must be mindful of risk, and that no matter how aware and prepared we are, we must face the unexpected and develop broad-spectrum strategies to emerging microbial threats.

Can nanotechnology provide fast, accurate and cost-effective diagnostic tools?

The COVID-19 challenge comes from the fact that asymptomatic infected people may be a significant source of spread, as with TB, HCV, or even HIV, where early and accurate diagnosis at initial stages of the infection can lead to better management and treatment.

Let us understand this by comparing HIV and COVID-19. AIDS caused by HIV is one of the most significant challenges of this century. An estimated 690,000 people died from AIDS-related illnesses in 2019. In the absence of any groundbreaking treatment, early diagnosis remains key to prolonging life. In countries such as India, with a huge population, significant poverty, and sub-standard healthcare system, the challenges are more critical.

Even after 40 years of research, ELISA based diagnosis (enzyme-linked immunosorbent assay), which has several limitations, is still the gold standard. Biosensors based on nanotechnology are regarded as a great hope to overcome these challenges. Their benefit comes through their unique properties, such as small size (1—100 nm, matching these microbes), shape (can be designed to mimic the micro surface), ease of function (chemically tailorable), high sensitivity (high surface to volume ratio), and robust structure. Several nano-based sensors are already being developed and tested based on biochemical, electrochemical, electromagnetic conjugated with molecular technologies for HIV biomarker detection.

COVID-19 was effectively controlled in some countries, such as South Korea and Hong Kong, due to robust testing. Early in the outbreak, governments across the world used rapid COVID-19 antibody tests to diagnose infection, but many failed to detect the stage of infection. Later, more evolved tests using nanotechnology (colloidal gold method) that can detect very low viral loads with high sensitivity were developed, which helped in controlling the spread of infection and suitable treatment paths. Nanotechnology is poised to revolutionize the diagnosis of pathogens by enabling safer, faster, reliable, cost-effective and sensitive nanodevices and nanoprobes for microbial detection and screening.

The tools of prevention

Researchers have been working constantly to find a vaccine — and nanotechnology is among their strongest tools. To outline the process: viral or bacterial infections generate an immune response (antibodies) by recognizing virus/ bacteria proteins on the surface (antigens) that neutralize these pathogens. Blood therapyusing plasma of recovered patients (used in India for COVID-19 treatment) is based on this concept, where the transfused plasma contains high levels of virus-neutralizing antibodies.

Vaccine development involves the same logic where a viral/bacterial mimicking immunogenic material is administered to generate a strong immune response without causing disease symptoms. The immune response of a potent vaccine depends on antigen stability, delivery and presentation. Over the last decade, nanomaterial-based vaccines have provided compelling advantages in vaccine development by increasing antigen stability, multivalent presentation to B cells leading to strong and enhanced immune response. Several nanoparticles, including self-assembled protein nanoparticles, organic nanoparticles, inorganic nanoparticles, and liposomes have been explored to generate an immune response.

The earliest example of nanoparticle-based vaccines used ferritin for developing influenza, HIV, hepatitis B and hepatitis C virus vaccines. In the case of COVID-19, the development of a modular nanoparticle-based vaccine, where the antigen within is interchangable, showed recent signs of progress for rapid vaccine development. It also showed that the vaccine developed a 10-fold higher antibody titre when used at five times less dosage than a soluble antigen. The results were validated in mice, and there are plans for human clinical trials in early 2021. Looking ahead, biomimetic nanomaterials hold promise for fighting infectious diseases, and could lead to the development of next-generation antiviral and antibacterial vaccines and therapies.

Antiviral and antibacterial therapy

In heavily populated countries such as India, infectious diseases due to bacteria, viruses, and parasites pose a serious public health threat Nanomedicine, with its unique capabilities, offers a modular and broad-spectrum antiviral and antibacterial therapeutic concept. We need to channel efforts effectively to develop targeted therapies against a broad spectrum of pathogens, rather than a single target whether it is COVID-19, HIV or hepatitis C.

Targeting strategies through broad-spectrum microbial and host targeting will provide multilateral solutions to current, as well as emerging microbial threats. Regarding targets, although each virus or bacteria has a unique structure, they share some similarities, which need to be identified and targeted. Nanomaterials can carry multitargeted entities, thus making it easier to target a broad spectrum of microbes through direct microbe targeting or stopping host cells or both.

A few examples using this approach include nitric oxide-releasing nano antibiotics, that can target bacterial cells through multiple paths. Other examples include interferon-lambda (IFN-λ), nanomaterial-enhanced replication inhibitors, membrane inhibitors and so on. Also, the therapies can be designed and delivered in a precise manner to have higher efficiency, specificity and sensitivity. It is important to understand that to make these concepts work needs a coordinated effort of biologists, engineers, material scientists and the private sector industries

Pre-emptively inactivating pathogens

Though treatment through antiviral, antimicrobial therapies or vaccines is the first-line approach to treat these microbial infections, rendering these infectious agents inactive before entering the host will play a major role in combating future pandemics.

Contaminated surfaces in public spaces are a major conduit for the uncontrolled outbreak of these infectious diseases. Nanoformulation based coatings that can be antimicrobial, or release antimicrobial agents on demand, have provided a new perspective to fight the pandemic causing agents.

These systems can be smart and responsive, releasing antimicrobial agents upon stimuli such as touch, change in temperature, or rubbing, making them an efficient tool to fight the spread of infection. Nanomaterial based PPE kits, nanoengineered masks for healthcare workers and the general public will provide additional comfortable, resistant, and safer means of protection against these microbes.

Technical Institutes in India, including IIT Kanpur, have exploited nanotechnology to develop nano-based products such as masks and PPE kits, which have been praised. However, these scientific efforts require effective coordination and collaboration among various stakeholders from government agencies to private partners to be successful.

Lessons learned and the way ahead

Nanotechnology can be a great weapon to fight future pandemics on various fronts. We have to find innovative solutions using this tool to track, target and eliminate the threat of these deadly microbes. Other technologies will complement nanotechnology to develop an innovative engineering solution in this global fight against existing as well as emerging microbial threats. We see an optimistic future where a coordinated effort from scientists of varying backgrounds will help to control some of the biggest problems of medical science, including microbial infections.

Nanotechnology Used in Covid Vaccines, 2,000 Foods, Goes Unlabeled


Extremely small particles of various compounds are being used as food additives, with unknown effects

There are some common additives you can look out for once you know what they are.

If you’re one of those people that can often be found in the food aisles of grocery stores reading labels and looking for ingredients you can’t pronounce and don’t want to eat, you’ve most likely noticed several ingredients that, unbeknownst to you, are made using nanotechnology—a process that converts silver, copper, gold, aluminum, silicon, carbon, and metal oxides, among other metals, into atom-sized particles that are one-billionth of a meter in size.

Commonly used nano-sized ingredients include titanium dioxide, which may be the most well-known additive. Others, such as silicon oxide, calcium carbonate, iron oxides and hydroxides, calcium silicate, tricalcium phosphates, and synthetic silicas, are only a few of the additives that may be in your pantry right now.

A New Ingredient

Nanotechnology has become widely used in food production and manufacturing since the 1990s, and its components are unimaginably small—one-hundredth the size of a strand of human hair. They make our food more colorful, brighter, creamier, or crunchier, and they keep it fresher for longer as well.

Nano-sized additives also make some of our medicines more effective.

Nanotechnology is used in the manufacturing of everyday products, such as electronics, food and food packaging, medicine, toys, clothing, sunscreens, cosmetics, dietary supplements, and much more.

While they can provide a myriad of benefits, these increasingly popular product enhancers come at a price, according to consumer groups and health experts—and that price is our health.

Health Implications

Because these particles are so small, studies have shown that they can breach the blood-brain barrier. Researchers are already exploring this quality for drugs meant to treat neurological conditions. But when it comes to food, that’s not a feature anyone is asking for. These particles are also able to circulate throughout the body and get absorbed into the bloodstream and organs. They can penetrate cell walls and potentially create inflammation and disease.

“They may pass through the lining of the gut and enter the bloodstream, which may trigger an inflammatory or immune response,” Harvard School of Public Health’s Georgios Pyrgiotakis told WebMD. “They may also build up in various parts of the body, including the lungs, the heart, and reproductive organs.”

In a July 2020 study, a group of researchers at the University of Massachusetts Amherst found that titanium dioxide, which is commonly added to gum, candy, drinks, and desserts, caused changes in the gut microorganisms of two groups of mice.

Both were given doses of titanium oxide. One group was fed a low-fat diet and the other a high-fat diet. After further testing to isolate the titanium dioxide effect, both groups had inflamed colons, which can lead to abdominal pain and diarrhea. The obese mice had more pronounced symptoms.

Vaccine Technology

Nanotechnology is currently being used in two of the three mRNA COVID-19 vaccines being given in the United States today.

There’s a lipid nanoparticle coating surrounding the mRNA in the vaccines, which allows them to penetrate the cell’s wall.

“Lipid nanoparticles are a vital component of the Pfizer/BioNTech and Moderna mRNA COVID-19 vaccines, playing a key role in protecting and transporting the mRNA effectively to the right place in cells,” stated the Chemical Abstracts Service, a division of the American Chemical Society.

“Of the many COVID-19 vaccines under development, the two vaccines that have shown the most promising results in preventing COVID-19 infection represent a new class of vaccine products: They are composed of messenger ribonucleic acid (mRNA) strands encapsulated in lipid nanoparticles (LNP).”

But scientists have continued to call for greater oversight of these substances by the Food and Drug Administration (FDA) because of their size. Because they easily cross the blood-brain barrier, they may damage it by altering the layer of cells that line the inner wall of blood vessels.

FDA Looks Closer

The FDA, the agency charged with overseeing these additives, has begun to weigh the health risks from nano-sized additives.

The agency currently classifies nanoparticles in food with the designation Generally Recognized as Safe (GRAS) if the manufacturer is already using the same ingredient in its larger, conventional form.

“The particle size distribution of a food substance may affect its ability to be absorbed by the body or to migrate from food packaging into food,” the FDA stated in a 2007 guidance document on nanotechnology in food.

“The FDA does not categorically judge all products nanomaterial or otherwise involving application of nanotechnology as intrinsically benign or harmful. The FDA is monitoring the evolving science and has a robust research agenda to help assess the safety and effectiveness of products using nanotechnology.”

In 2011, the FDA Nanotechnology Task Force was created to coordinate its efforts with research scientists in the United States and internationally. Its goals are to train staff in the latest science at state-of-the-art facilities and to encourage collaborative research projects.

“Production and application of nanoparticles in consumer products is at an all-time high due to the emerging field of nanotechnology,” the FDA stated in a 2017 Grand Rounds webcast. “Direct detection and quantification of trace levels of nanoparticles within consumer products is very challenging and problematic.”

Tiny Particles, Growing Problem

By 2020, the FDA reported that applications for the approval of products containing nanotechnology had skyrocketed in the previous 10 years. According to many experts in the United States, there are 1,900 to 2,500 food products that use nanotechnology.

In response to health concerns about these products, countries around the world have taken steps to limit or ban some or all nanotechnology in their food.

In 2010, Canada banned nanotechnology in organic food production. Since 2011, the European Union has required all food to be labeled if it contains engineered nanomaterials. In 2015, the bloc required additional testing to ensure health safety.

In 2018, the European Food Safety Commission was petitioned by a group of scientists within the agency to reject the food additive silicon dioxide as safe for consumption because of nanoparticles in it, until a particle size distribution could be confirmed.

Beginning Jan. 1, 2020, France banned any foods containing titanium dioxide from entering the country.

In the United States, the FDA doesn’t require any products produced with nanoparticles to be labeled or banned, and its guidelines recommend oversight on a case-by-case basis. Research on the long-term effects of ingesting nanoparticles remains scant.

Nanotechnology Could Help Us Cure IBD


Finding a cure for inflammatory bowel disease is a big goal. But the key to achieving it might be to think small. 

University of Wisconsin-Madison researchers are developing nanoparticles – particles measuring between 1 and 100 nanometers (one-billionth of a meter) – designed to treat IBD, including Crohn’s disease and ulcerative colitis. (For context: A sheet of paper is about 100,000 nanometers thick.)

Described in a paper in Science Advances, these nanoparticles can fight harmful molecules, called reactive oxygen species (ROS), that can worsen IBD in excessive amounts. They are made from poly(propylene sulfide) – a polymer that can neutralize ROS – and hyaluronic acid, a compatible compound commonly used in medicine.

The nanoparticles – the researchers call them “backpacks” – can be attached to probiotics, which deliver them to the gut. 

“Due to the colonizing property of probiotics in colon tissues, the nanoparticles could be delivered to colon tissues by probiotics and released slowly,” says study author Quanyin Hu, PhD, a biomedical engineer and assistant professor at the University of Wisconsin-Madison School of Pharmacy. 

This helps give the nanoparticles time to bring the ROS level back down to normal. But that’s only part of the IBD treatment the researchers envision.

Signs Your IBD Is Getting Worse

With mild IBD, most people feel better with medication, but there are severe cases and symptoms to look out for.

Share Share on Facebook Share on Twitter

The technology builds on a previous development from Hu and his team – a protective probiotic shell coating. The coating, which is about 330 nanometers thick, helps probiotics survive long enough to establish and multiply in the gut. 

“The harsh environment of gastric acid and bile salt would kill most probiotics,” Hu says. “Moreover, antibiotics usually used in inflammatory bowel disease treatment also harm probiotic growth.” 

Early results are promising, he says. Mice with IBD that received the full treatment – combining the ROS-targeting nanoparticles with the coated probiotics –  had fewer IBD symptoms, like less weight loss and colon shortening, than those treated with the encapsulated probiotics alone. 

By attacking the disease on multiple fronts – reducing the ROS and improving the balance of gut microbiota – a healthy gut environment could be restored, Hu says. In other words: “[It] might be possible to finally cure inflammatory bowel disease.”

Nanotechnology offers all kinds of unique advantages over traditional IBD treatments, he says. Nanoparticles can be designed to target specific tissues, like colon tissues. And compared to small molecules, they can circulate throughout the body longer, so they have more time to build up and do their job.

The next steps will be to test the treatment in large animals and “to develop a stable formulation that can be stored for a long time and produced in a scalable and economical manner,” Hu says. 

Current IBD treatments “can only relieve symptoms,” not cure the disease, he says. 

“This study is our first try to fundamentally treat inflammatory bowel disease by recovering a healthy microenvironment in the intestines, and  our preliminary data demonstrated that this strategy is delivering promises to pave a new treatment strategy for IBD,” Hu says. 

Acne spot treatment: Latest in nanotechnology, transdermal drug delivery to take on an old problem


Acne, a scourge of adolescence, may be about to meet its ultra high-tech match. By using a combination of ultrasound, gold-covered particles and lasers, researchers have developed a targeted therapy that could potentially lessen the frequency and intensity of breakouts, relieving acne sufferers the discomfort and stress of dealing with severe and recurring pimples.

The particles are delivered into the sebaceous gland by the ultrasound, and are heated by the laser. The heat deactivates the gland.

Acne, a scourge of adolescence, may be about to meet its ultra high-tech match. By using a combination of ultrasound, gold-covered particles and lasers, researchers from UC Santa Barbara and the private medical device company Sebacia have developed a targeted therapy that could potentially lessen the frequency and intensity of breakouts, relieving acne sufferers the discomfort and stress of dealing with severe and recurring pimples.

“Through this unique collaboration, we have essentially established the foundation of a novel therapy,” said Samir Mitragotri, professor of chemical engineering at UCSB.

Pimples form when follicles get blocked by sebum, an oily, waxy substance secreted by sebaceous glands located adjacent to the follicle. Excretion of sebum is a natural process and functions to lubricate and waterproof the skin. Occasionally, however, the openings of the follicles (pores) get blocked, typically by bits of hair, skin, dirt or other debris mixed in with the sebum. Overproduction of sebum is also a problem, which can be caused by hormones or medications. Changes in the skin, such as its thickening during puberty, can also contribute to follicle blockage. Whatever the cause, the accumulating sebum harbors bacteria, which results in the inflammation and local infection that we call acne.

The new technology builds on Mitragotri’s specialties in targeted therapy and transdermal drug delivery. Using low-frequency ultrasound, the therapy pushes gold-coated silica particles through the follicle into the sebaceous glands. Postdoctoral research associate Byeong Hee Hwang, now an assistant professor at Incheon National University, conducted research at UCSB.

“The unique thing about these particles is that when you shine a laser on them, they efficiently convert light into heat via a process called surface plasmon resonance,” said Mitragotri. This also marks the first time ultrasound, which has been proved for years to deliver drugs through the skin, has been used to deliver the particles into humans.

These silica and gold particles are exceedingly tiny — about a hundredth of the width of a human hair — but they are key to the therapy. Once the particles are deposited in the target areas, lasers are aimed at them and, because the gold shells are designed specifically to interact with the near-infrared wavelengths of the lasers, the light becomes heat. The heated particles essentially cause deactivation of the sebaceous glands. The sebum, pore-blocking substances and particles are excreted normally.

“If you deactivate these overproducing glands, you’re basically treating the root cause of the acne,” said Mitragotri.

According to the research, which is published in the Journal of Controlled Release, this protocol would have several benefits over conventional treatments. Called selective photothermolysis, the method does not irritate or dry the skin’s surface. In addition, it poses no risk of resistance or long-term side effects that can occur with antibiotics or other systemic treatments.

“It’s highly local but highly potent as well,” Mitragotri said of the treatment. “I think this would be beneficial in addressing the concerns regarding other, conventional treatments.” According to Mitragotri, this photothermolysis method is particularly suited to patients with advanced, severe or difficult-to-treat acne. The research has gone from concept to clinical trials in a relatively short amount of time. However, other more long-term elements of this therapy have yet to be studied, such as the extent of follicular damage, if any; what the most effective and beneficial parameters of this treatment may be; and what contraindications exist.

Ray Kurzweil Predicts Three Technologies Will Define Our Future


Over the last several decades, the digital revolution has changed nearly every aspect of our lives.

The pace of progress in computers has been accelerating, and today, computers and networks are in nearly every industry and home across the world.

Many observers first noticed this acceleration with the advent of modern microchips, but as Ray Kurzweil wrote in his book The Singularity Is Near, we can find a number of eerily similar trends in other areas too.

According to Kurzweil’s law of accelerating returns, technological progress is moving ahead at an exponential rate, especially in information technologies.

This means today’s best tools will help us build even better tools tomorrow, fueling this acceleration.

But our brains tend to anticipate the future linearly instead of exponentially. So, the coming years will bring more powerful technologies sooner than we imagine.

As the pace continues to accelerate, what surprising and powerful changes are in store? This post will explore three technological areas Kurzweil believes are poised to  change our world the most this century.

Genetics, Nanotechnology, and Robotics

Of all the technologies riding the wave of exponential progress, Kurzweil identifies genetics, nanotechnology, and robotics as the three overlapping revolutions which will define our lives in the decades to come. In what ways are these technologies revolutionary?

  • The genetics revolution will allow us to reprogram our own biology.
  • The nanotechnology revolution will allow us to manipulate matter at the molecular and atomic scale.
  • The robotics revolution will allow us to create a greater than human non-biological intelligence.

While genetics, nanotechnology, and robotics will peak at different times over the course of decades, we’re experiencing all three of them in some capacity already. Each is powerful in its own right, but their convergence will be even more so. Kurzweil wrote about these ideas in The Singularity Is Near over a decade ago.

Let’s take a look at what’s happening in each of these domains today, and what we might expect in the future.

shutterstock_283181264

The Genetics Revolution: ‘The Intersection of Information and Biology’


“By understanding the information processes underlying life, we are starting to learn to reprogram our biology to achieve the virtual elimination of disease, dramatic expansion of human potential, and radical life extension.”
Ray Kurzweil, The Singularity Is Near

We’ve been “reprogramming” our environment for nearly as long as humans have walked the planet. Now we have accrued enough knowledge about how our bodies work that we can begin tackling disease and aging at their genetic and cellular roots.

Biotechnology Today

We’ve anticipated the power of genetic engineering for a long time. In 1975, the Asilomar Conference debated the ethics of genetic engineering, and since then, we’ve seen remarkable progress in both the lab and in practice—genetically modified crops, for example, are already widespread (though controversial). 

Since the Human Genome Project was completed in 2003, enormous strides have been made in reading, writing and hacking our own DNA.

Now, we’re reprogramming the code of life from bacteria to beagles and soon, perhaps, in humans. The ‘how,’ ‘when,’ and ‘why’ of genetic engineering are still being debated, but the pace is quickening.

Major innovations in biotech over the last decade include:

Many challenges still need to be overcome before these new technologies are widely used on humans, but the possibilities are incredible. And we can only assume the speed of progress will continue to accelerate. The surprising result? Kurzweil proposes that most diseases will be curable and the aging process will be slowed or perhaps even reversed in the coming decades.

shutterstock_223011598
The Nanotechnology Revolution: ‘The Intersection of Information and the Physical World’


“Nanotechnology has given us the tools…to play with the ultimate toy box of nature atoms and molecules. Everything is made from it…The possibilities to create new things appear endless.”
– Nobelist Horst Störmer, The Singularity Is Near

Many people date the birth of conceptual nanotech to Richard Feynman’s 1959 speech, “There’s Plenty of Room at the Bottom,” where Feynman described the “profound implications of engineering machines at the level of atoms.” But it was only when the scanning tunneling microscope was invented in 1981 that the nanotechnology industry began in earnest.

Kurzweil argues that no matter how successfully we fine tune our DNA-based biology, it will be no match for what we will be able to engineer by manipulating matter on the molecular and atomic level.

Nanotech, Kurzweil says, will allow us to redesign and rebuild “molecule by molecule, our bodies and brains and the world in which we live.”

Nanotechnology Today

While we can already see evidence of the ‘genetics revolution’ in the news and in our daily lives, for most people, nanotech might still seem like the stuff of science fiction. However, it’s likely you already use products on a daily basis that have benefitted from nanotech research. These include sunscreens, clothing, paints, cars, and more. And of course, the digital revolution has continued thanks to new methods allowing us to make chips with nanoscale features.

In addition to already having practical applications today, there is much research and testing being conducted into groundbreaking (if still experimental) nanotechnology like:

Though we continue to improve at manipulating matter on nanoscales, we’re still far from nanobots or nanoassemblers that would build and repair atom by atom.

That said, as Feynman pointed out, the principles of physics do not speak against such a future. And we need only look to our own biology to see an already working model in the intricate nano-machinery of life.

shutterstock_337786004

The Robotics Revolution: ‘Building  Strong Artificial Intelligence’

“It is hard to think of any problem that a superintelligence could not either solve or at least help us solve. Disease, poverty, environmental destruction, unnecessary suffering of all kinds: these are things that a superintelligence equipped with advanced nanotechnology would be capable of eliminating.”
Ray Kurzweil, The Singularity Is Near

The name of this revolution might be a little confusing. Kurzweil says robotics is embodied artificial intelligence—but it’s the intelligence itself that matters most. While acknowledging the risks, he argues the AI revolution is the most profound transformation human civilization will experience in all of history. 

This is because this revolution is characterized by being able to replicate human intelligence: the “most important and powerful attribute of human civilization.”

We’re already well into the era of “narrow AI,” which is a machine that has been programmed to do one or a few specific tasks, but that’s just a teaser of what’s to come.

Strong AI will be as versatile as a human when it comes to solving problems. And according to Kurzweil, even AI that can function at the level of human intelligence will already outperform humans because of several aspects unique to machines:

  • “Machines can pool resources in ways that humans cannot.”
  • “Machines have exacting memories.”
  • Machines “can consistently perform at peak levels and can combine peak skills.”

Artificial Intelligence Today

Most of us use some form of narrow AI on a regular basis — like Siri and Google Now, and increasingly, Watson. Other forms of narrow AI include programs like:

  • Speech and image recognition software
  • Pattern recognition software for autonomous weapons
  • Programs used to detect fraud in financial transactions
  • Google’s AI-based statistical learning methods used to rank links

The next step towards strong AI will be machines that learn on their own, without being programmed or fed information by humans. This is called ‘deep learning,’ a powerful new mode of machine learning, which is currently experiencing a surge in research and applications.

Why Is This Important?

Kurzweil calls genetics, nanotechnology, and robotics overlapping revolutions because we will continue to experience them simultaneously as each one of these technologies matures.

These and other technologies will likely converge with each other and impact our lives in ways difficult to predict, and Kurzweil warns each technology will have the power to do great good or harm—as is the case with all great technologies. The extent to which we’re able to harness their power to improve lives will depend on the conversations we have and the actions we take today.

“GNR will provide the means to overcome age-old problems such as illness and poverty, but it will also empower destructive ideologies,” Kurzweil writes. “We have no choice but to strengthen our defenses while we apply these quickening technologies to advance our human values, despite a lack of consensus on what those values should be.”

The more we anticipate and debate these three powerful technological revolutions, the better we can guide their development toward outcomes that do more good than harm.