Tiny Fossils Reveal Dinosaurs’ Lost Worlds.


Special assemblages of minuscule fossils bring dinosaur ecosystems to life

Illustration of a dinosaur shape, with lush vegetation and animals.

Enter the fossil gallery of a natural history museum, and you’re likely to encounter spectacular skeletons of some of the most manifestly awesome creatures ever to have walked our planet: dinosaurs. From towering sauropods and fearsome tyrannosaurs to tanklike ankylosaurs and horned ceratopsians, dinosaurs dominate our conceptions of the past. But to understand these animals and their world, scientists must look beyond the dazzling remains of Apatosaurus, Tyrannosaurus, and other icons to tiny fossils that appear, at first glance, distinctly unimpressive. You won’t see these humble microfossils on public display, but they provide some of the best clues we have into the lives and times of our favorite prehistoric beasts.

For the past three decades we have been conducting expeditions to recover such fossils in the Upper Missouri River Breaks National Monument, a 149-mile expanse of astoundingly beautiful badlands in central Montana. Here in the very place where scientists got their first look at North America’s dinosaurs starting in the 1800s, our team has discovered a wealth of fossils from an extraordinary array of previously unknown organisms that lived alongside those better-known dinosaurs. These fossils are a record of an ecosystem that flourished 10 million years before a killer asteroid slammed into Earth.

We have been targeting special fossil assemblages called vertebrate microfossil bonebeds, or VMBs. These sites preserve thousands of small, hard parts of a diversity of animals, ranging from traces of microscopic parasites, to the scales of minnows, to bits of much bigger frogs, turtles, birds, mammals, crocodiles and dinosaurs. We find the fossils both in the field and in the laboratory, where we use dissecting microscopes to search through sediment for the minuscule remains. These well-preserved fossils are providing some of the highest-resolution pictures yet of a dinosaur ecosystem. They reveal the often overlooked creatures that scurried and swam around the feet of dinosaurs, buzzed annoyingly in their ears and maybe even preyed on their young—and scavenged their dead. With them in the mix, the ancient world springs to life.

The two of us bring very different perspectives to studying VMBs. Kristi works to understand the biology of the biggest dinosaurs of all time—the long-necked, quadrupedal plant eaters called sauropods. These giants have captivated her for as long as she can remember. Kristi has been happiest toiling in a sun-drenched quarry, slowly excavating limb bones far bigger than she is. Ray, in contrast, is a geologist who works in the rocks to decipher how bonebeds—accumulations of skeletons—form and what they reveal about the environments of an organism’s life and death. Luckily for us, in addition to being married, we are each other’s closest scientific collaborators.

Long before we joined forces, Ray had been busy working in fossil deposits that were the antithesis of the ones Kristi was focused on. Rather than spending an entire field season excavating a single enormous skeleton, Ray might collect thousands of fossils in a few hours in the VMBs. This achievement sounds amazing, but most of the fossils from the VMBs are so small that you could sneeze and blow them off your fingertips. With her enduring love of digging up the biggest of the big, Kristi was a reluctant convert to the study of VMBs. But looking at the tiny remains with handheld lenses and microscopes revealed perfectly preserved bones of a menagerie of creatures that lived in the shadows of her giants. Microfossils from the VMBs, Kristi realized, have outsized power when it comes to exposing the workings of dinosaur ecosystems.

A wide view of a desert mountain and canyon landscape at sunset.
The sun sets in the Missouri Breaks. The rock beds of the Judith River Formation, exposed on both sides of the valley, contain special assemblages of tiny fossils.  

Through our work in the Upper Missouri River Breaks National Monument—or the Breaks, as it is known—we’ve been able to reconstruct one such ecosystem in remarkable detail. It’s a scene many decades in the making. In 1855 a 26-year-old explorer and naturalist named Ferdinand Hayden was the first to investigate the Breaks geologically. For a few short days he traversed the roughly 76-million-year-old outcrops there. His foray into these fossil-rich rocks yielded the first scientific collection of dinosaur bones and teeth discovered in all of North America. But Hayden didn’t just collect dinosaur remains. From what we would now recognize as a classic VMB, he also picked up a handful of bones and teeth from fish, turtles and crocodiles. With his first major find, Hayden not only populated our view of prehistoric North America with a bunch of dinosaurs but also began to reveal an ancient ecosystem.

For more than 30 years we, along with our gangs of undergraduate students, have followed in Hayden’s footsteps. We do it old school, canoeing and hiking through the badlands and braving the heat, mud, bugs and snakes as we search for remnants of animals that lived in the Cretaceous period. Our work has produced tens of thousands of bones and teeth of dinosaurs and the animals that lived alongside them. We’ve learned how these special fossil assemblages form, which creatures these fossils represent and some of what they can teach us about the complex Cretaceous world that dinosaurs made famous.

At the heart of the Breaks lies the Missouri River, the landscape architect responsible for carving the dramatic “break” in the undulating plains that gives the area its name. Rocky exposures soar many hundreds of feet above the river valley. These striated layers of sandstone, mudstone and coal make up the Judith River Formation.

Marine sandstones and shales found near the bottom and top of the formation indicate that the sea was never far away in the Cretaceous. Back then, Judith River sediments were accumulating near the coastline of a shallow inland sea known as the Western Interior Seaway. The seaway, which stretched from the Arctic Ocean to the Gulf of Mexico and east through what is now Hudson Bay, essentially divided North America into three parts. In the Cretaceous, the sea’s shoreline was just a few miles to the east of where we work now, making our field area in the Breaks beachfront property. Ancient rivers flowed from the nascent Rocky Mountains toward the Western Interior Seaway. Swampy floodplains surrounded these Cretaceous rivers; it was an environment analogous to Louisiana’s Atchafalaya Basin or the Florida Everglades.

Such places offer the perfect conditions for producing an exceptional fossil record. Warm, wet environments have an abundance of food and water that can support many different plants and animals. When these organisms died in what is now the Breaks, their remains accumulated slowly and steadily in the quiet lakes and wetlands, eventually getting covered in fine-grained mud. The sediment chemistry in these swampy systems is similarly favorable to long-term preservation. Instead of dissolving delicate bones, teeth and shells, the chemical conditions promoted fossilization, basically transforming these body parts into stone.

Geological forces have also played a part in preserving these organisms for posterity. The entire region was tectonically active, part of a huge geological basin that formed as nearby rising mountains pushed down on Earth’s crust. This basin allowed the Judith River Formation sediments and the fossils they preserved to accumulate instead of being eroded away into the sea. The erosion that this region is now experiencing makes it possible for us to find the fossils in the rocks.

A landscape with blue sky and clouds, mountains, vegetation and two people in a canoe in a body of water.
To reach their fossil-hunting grounds in the Breaks, the researchers paddle 50 miles down the Missouri River.

Although parts of the Judith River Formation preserve big, beautiful dinosaur skeletons, the areas we target, deep within the river valley, are a little different. These sites—the VMBs—preserve a multitude of bones, teeth and other bits just a fraction of an inch in size from organisms ranging from dinosaurs to mollusks.

Scholars have long debated how VMBs form. One of the first hypotheses suggested that the fossils preserved in VMBs had collectively passed through the digestive tracts of ancient carnivores and that the sites represent concentrations of feces. Although scatological assemblages do exist in the fossil record, this explanation cannot, on its own, account for the quality of preservation and the geological context of the Judith River VMBs. Another hypothesis held that VMBs form when the flow of a river picks up and carries small, hard parts from an array of animals and deposits them in a single spot. But the geological and forensic data we have collected in the Judith River Formation are largely inconsistent with this transport-based scenario.

Along with our collaborator Matthew Carrano, dinosaur curator at the Smithsonian Institution’s National Museum of Natural History, we’ve spent lots of time dissecting the fine-scale details of more than 20 Judith River Formation VMBs and developed a new model for how these sites develop. Our data indicate that these VMBs accumulated within ponds and lakes. Fine-grained sediments rained down on the remains of animals that lived and died in and around these long-lived aquatic ecosystems. Over time tough skeletal remains collected on the bottom and formed fossil deposits. As bottom-dwelling organisms burrowed through the mud, scavenged carcasses and churned up sediments in the course of their daily routines, individual skeletons broke, and their elements dispersed.

This scenario explains why VMBs yield skeletal fragments that are generally disarticulated and why the body parts that persist tend to be particularly durable and robust (think teeth, small bones and scales). When you study VMBs, you can’t connect a thigh bone to a knee bone like you can when you find a lone dinosaur skeleton. But VMBs tell us much more than a single large skeleton can because they preserve communities.

Where the Pavement Ends … the Fun Begins.” That’s the slogan printed on the beer koozies at our local bar in the town of Winifred, Mont., population 200, more or less. There is no better description of this little prairie oasis. Winifred is the last stop in civilization before we leave the pavement for dirt tracks and river currents. We’re headed to an area where few people travel, which is just the way we like it. For us, as it was for Hayden, the best ways to get to the farthest and most interesting reaches of the Breaks are by boat and on foot.

Once we leave the pavement behind in Winifred, the tracks wind down to the river, where the heat radiates off the rock walls of the valley—it’s usually at least 10 degrees hotter on the river than it is up in Winifred. The air is still, and the Breaks are silent apart from the occasional clacking and snapping of wings as grasshoppers launch themselves skyward.

Only a few roads cut through this territory. One of them leads to Stafford-McClelland Ferry terminal, where overhead cables guide a platform ferry across the Missouri River. It’s one of the only places to cross the river for miles, and it often serves as the launch point for our flotilla of canoes. Once we start our journey, chances are slim that we’ll see any other humans until we go ashore farther downstream. We’re loaded to the gunwales with the gear we’ll need for a 50-mile paddle, including as much water as we can carry, all our food, tents, and collecting supplies, including several five-gallon buckets, mostly for collecting fossil-bearing sediment (at least one will serve as our toilet for the next several days). The only running water on our journey will be the silty river. Baths will be dunks that require wading through sticky, knee-deep mud. They cool us off, but we usually end up dirtier than before.

The badlands hug the river around us, creating a corridor of rock with nothing but sky overhead. Bald Eagles nest in stands of cottonwoods that line the banks, and Osprey scan the river ahead of us in search of a meal. Beavers surface and slap their tails in warning, the sound echoing off the hillsides and reverberating downstream. Every now and then we can discern the silhouettes of huge catfish and carp just under the murky surface, and occasionally a soft-shelled turtle pokes its pointed head up midriver to check us out.

In the afternoon stillness, the sun beats down, heating our aluminum canoes and our shoulders. We stick our feet overboard to cool down. We swat away mosquitoes and no-see-ums, gnats that love to bite ears, eyelids and hairlines. If the wind is up, we might tie the canoes to one another with bungee cords and raft together, holding up a tarp as a makeshift sail and speeding away downstream. Late in the afternoon we’ll find a spot in the welcoming shade of the cottonwoods and set up camp.

Approximate area that became Montana highlighted on a Late Cretaceous globe. Modern map shows a detailed view of the Judith River Formation and Upper Missouri River Breaks National Monument, along with 28 vertebrate microfossil bonebed sites near the Missouri River.

We wake with the sun and hike out into the hills, looking out for rattlers as we dodge spiky yucca and cactus and weave our way through stands of aromatic sagebrush. We occasionally spook a bighorn sheep resting in the shadows or get spooked ourselves as another sheep trots along the highest cliffs above us. Our eyes are trained on the ground and nearby slopes as we prospect for VMBs.

It might seem impossible to find such small fossils in this vast landscape, but there are a few clues to guide us. We search for just the right kind of sedimentary rock: dark gray and brown mudstone, maybe with some coal-black fossilized plants that indicate a swampy environment, and lighter gray sandstones bearing angled patterns that reflect ancient currents. We also look for exposures that sparkle in the sun. The sparkle comes from fragments of fossilized clams and snails that lived and died in Cretaceous ponds and lakes. VMBs are often found within these glittering layers of rock.

When someone spots a few broken fragments of fossils that have weathered out from a rock layer somewhere upslope, we’ll track those bits and pieces back to their source, slowly crawling up the incline on our hands and knees, noses to the ground, eyes scanning for the tiny fossils emerging from the eroding rocks. Eventually we’ll hit the layer where the fossils are concentrated. We can spend an entire day or more on a single small hill, using an ice pick or a pocketknife to help gently nudge fossils from the soft rock of the VMB. We collect everything that we can see, carefully adding our fossils to sample bags and vials. After we’ve scoured the surface, it’s time to bring in the rock hammers, hoe picks and shovels. We excavate blocks of the bonebed and load them into our five-gallon buckets and giant sample bags.

Once we’re back at our college lab, we load the fossil-bearing sediment into a contraption we call “the Dunker.” This automated device washes the bonebed sediment through stacked sieves with different mesh sizes. We place the sediment chunks into one sieve that captures any fossils and bits of rock larger than about 0.08 inch in size but allows smaller pieces through. Below this sieve is a fine-mesh sieve that captures fossil bits down to 0.02 inch in size (smaller than a pinhead). After a few hours in the Dunker, most sediment clumps break down, and the sediment washes away, leaving behind a residue of bones, teeth, shells and other fossils in the sieves.

With the fossils recovered, we move to microscopes. Our students have spent hundreds of hours focusing on the fossils retrieved after sieving. They use superfine paintbrushes with bristles thinned to just a few hairs to sort through the fossil concentrates. It is remarkable what the VMB world looks like under magnification. What the naked eye perceives as mere specks of black resolves into perfect little teeth, jaws, limb bones and vertebrae. The diversity of the Judith River Formation comes to life.

Let us introduce you to the cast of characters we have met in the VMBs. We begin in the terrestrial realm, where the stars of the Cretaceous, the dinosaurs, lived. Dinosaurs had teeth that were replaced throughout life, and these teeth are some of the most common and easily identified fossils in our collections. Some of the dinosaur teeth in our VMBs belong to armored ankylosaurs such as those in the Zuul genus and dome-headed pachycephalosaurs such as Stegoceras. By far the most abundant dinosaur teeth in our samples come from herbivorous dinosaurs with rows of teeth that formed a grinding surface functionally similar to the molars of mammals. Usually we find only ground-down fragments of these teeth, so identifying particular species can be tough, but we’ve recovered teeth from duck-billed hadrosaurian dinosaurs, including Brachylophosaurus, and from horned and frilled ceratopsians, such as Spiclypeus.

Our sites have also yielded traces of carnivorous dinosaurs, which were the top predators in this Late Cretaceous ecosystem. Sharp, serrated teeth document the presence of Tyrannosaurus rex cousin Daspletosaurus and the small, feathered theropod Troodon. We’ve also found claws and vertebrae from the toothless, ostrichlike theropod Ornithomimus. Dinosaurs ruled the skies of the Judith River ecosystem, too, in the form of birds. Small, fragile animals typically don’t get preserved very well, but many early birds had teeth, which are durable enough to survive in VMBs.

Like birds, mammals are another elusive group in the Late Cretaceous fossil record. But we know they made their way to the Judith River Formation lakes and ponds because we occasionally find teeth from little furballs such as Alphadon, which was similar to living opossums.

These mammals may have fallen prey to some of the many aquatic reptiles that lived in and around the ancient lakes here. Crocodiles and alligators, big and small, hunted the open waters and the shorelines. Their teeth, vertebrae and bony plates of armor are among the most common VMB fossils. One unusual creature in the lineup is Champsosaurus. This long-snouted, sharp-toothed animal looked somewhat like today’s gharial, a fish-eating crocodilian that ambushes its prey. The spool-like vertebrae and broad ribs of Champsosaurus turn up frequently at our sites, signaling that it was a prominent player in the Judith River Formation ecosystem.

As you might expect in this 76-million-year-old water world, fish were abundant. Our collections include thousands of vertebrae, teeth and scales representing both large fish and minnows. These fish would have schooled in the Judith River Formation lakes, making the water shimmer with their collective movement. Freshwater sharks also swam in these waters, as did Myledaphus, a guitarfishlike creature with flat, diamond-shaped teeth perfect for crushing small crustaceans and mollusks.

Ferocious gar fish (Lepisosteus) were also numerous. Their scales help us document a fascinating story of ecological interaction among species in the Judith River Formation. The bodies of gars are protected by an armor of interlocking scales covered in a special type of enamel-like tissue called ganoine. When crocodiles ingest gars, the acids in their harsh digestive systems strip away the outer layer of ganoine on the fish scales, leaving the scales corroded. We can see from the condition of the gar scales in the VMBs that crocs were eating gars back then just as they do now.

These watery ecosystems harbored a variety of amphibians, too. Intriguingly, many of the minute amphibian limb elements and ribs that we recover from our sieves are covered in even tinier tooth marks. These traces were made when a gar fish, a baby crocodile or even a small theropod dinosaur took a bite, scraping its teeth along bone as it did.

A group of people in hiking gear in a desert mountain landscape.
The authors and their students explore exposures of the Judith River Formation within the Breaks in search of concentrations of microfossils such as this tooth (below) from a carnivorous dinosaur.
A close-up view of a tooth in the palm of a hand.

Amphibians were not the only creatures that moved between water and land in this ecosystem. Turtles also spent time both in the lake and on terra firma. We’ve found bony plates from turtle shells with distinctive ornamentation patterns characteristic of several soft-shelled turtle species, as well as snapping turtles. Lizards made a home here, too. We have confirmed the presence of several different lizard groups, from close relatives of living iguanas, to long-tailed skinklike forms, to heavily armored insect-eating species.

We also find fossil eggshells in our VMBs. When discovered in isolation, eggs and eggshells can be tricky to link to a particular species. For this reason, there is a special classification system for eggshells called ootaxonomy. We begin by describing the outer and inner surfaces of the shell, noting the color and texture, as well as the distribution of the pores that allowed gas exchange with the developing embryo. Then we look at thin sections of the shell under a microscope to see its crystalline structure. In addition, we can study the chemistry of the eggshells for clues to what types of organisms might have laid these eggs. By assessing fossil eggshells in this way, we have been able to establish that theropod and duck-billed dinosaurs, as well as a variety of crocodiles and turtles nested in the lush lowland environments preserved within the Judith River Formation.

Every once in a while, just when our vision starts to blur after hours of looking at VMB residues through a microscope, we spot something new that isn’t a recognizable bone, tooth, or other body part. Sometimes these enigmatic remains turn out to be trace fossils—records of an animal’s activity but not part of the animal itself. These fossils, which can be tooth marks (like those seen on the amphibian bones), footprints or feces, among other traces, all signal the presence and behaviors of creatures that we might not detect otherwise.

Small, doughnutlike structures known as gastroliths, or “stomach stones,” are one type of trace fossil that occurs in our samples. They show that crayfish lived in the lakes, ponds, rivers and streams of the Breaks back in the Cretaceous. In modern crayfish, gastroliths serve to store calcium carbonate, an essential component of their exoskeletons. When crayfish grow, they must molt their old exoskeleton and build a new, bigger one. Rather than discarding the old armor entirely, they conserve its precious calcium carbonate by sequestering it in gastroliths until they can redeploy it. The gastroliths we find in the Judith River Formation hint that Cretaceous crayfish, like their modern counterparts, were experts at reducing, reusing and recycling.

Perhaps the most mysterious trace fossils in our VMBs are igloo-shaped bumps that we frequently find on fragments of clamshells. We puzzled over these peculiar features for years before we finally realized that they are identical to the modern-day structures that form when parasitic flatworms infest clams. The clams build the igloos as an act of self-defense, attempting to contain the invading parasite in a mineralized chamber. We have every reason to believe our Cretaceous clams were doing the same thing to protect themselves.

Parasites tend to have small, squishy bodies—characteristics that do not bode well for fossilization. As a result, scientists usually can’t include these ecologically important animals in their reconstructions of fossil food webs. The Judith River VMB clamshell igloos not only confirm the presence of flatworms in this ecosystem but also push back the oldest known occurrence of this type of parasitic interaction between flatworm and clam from just 6,000 or so years ago to 76 million years ago. Modern-day flatworm parasites have complex life cycles involving multiple host species. Clams serve as just one host in the flatworm life cycle, with clam-eating shorebirds often serving as the ultimate host. Maybe in the Cretaceous period flatworms created lines of ecological connection between organisms as different as clams and dinosaurs.

The unassuming fossils of the Judith River Formation VMBs have given us amazing insights into this vibrant lost world of the dinosaurs, more than we ever could have imagined possible. Yet we know there is still so much more to learn. Discoveries like the clamshell igloos underscore what Ferdinand Hayden figured out on his trailblazing journey through the Breaks back in 1855: no fossil is too small or too obscure to reveal amazing, unexpected details about ancient ecosystems

Fossils Finally Reveal Fiery Colors of Prehistoric Animals


An orange and gray fossil of a bird embedded in light brown rock.
The bird Confuciusornis, which lived more than 120 million years ago, had warm-colored feathers.

The prehistoric animal kingdom was a riot of colors, from iridescent-feathered dinosaurs to jet-black ink excreted by Jurassic squid relatives. Like modern-day animals, ancient species’ hues helped them communicate, camouflage and even regulate body temperature. But reconstructing these colors today is a challenge because compounds and structures that color animals’ skin, fur and feathers usually degrade or change during fossilization. Experts have developed methods to reliably detect structures and pigments related to dark colors like the black and brown of feathered dinosaurs, but other shades (like the yellow and reddish-orange made by pigments called pheomelanins) have been especially hard to pin down.

Now a team of scientists has filled in that missing chunk of the prehistoric palette by developing the first reliable test to detect these gingery colors in fossils. “Pheomelanin is clearly an elusive pigment, and these findings will absolutely help us to detect evidence of ginger pigments in other fossils,” says the study’s lead author Tiffany Slater, a paleobiologist at University College Cork in Ireland. The results were recently published in Nature Communications.

Slater and her colleagues went looking for ginger shades in the fossil record because evidence of pheomelanins has shown up there far less often than the researchers expected, compared with modern-day animals. And the previously reported evidence was largely inconclusive. Scientists who interpreted a reddish color for the armored dinosaur Borealopelta, for example, couldn’t distinguish whether the pheomelanin they found came from the original pigment or from contamination after the dinosaur’s death.

So Slater and her co-authors created a test to distinguish between true chemical traces of ginger colors and those introduced by nonbiological sources. They heated various modern-day bird feathers in an oven to mimic the breakdown of biological compounds during the fossilization process. By inspecting the heated feathers under a microscope and using a chemical assay to identify different types of melanin, the team found that biological pigments do leave a distinct and identifiable signature in fossils. The researchers then checked various fossils for the chemical markers of the pigment and found them in a 10-million-year-old frog, the Cretaceous bird Confuciusornis and the dinosaur Sinornithosaurus.

The new analysis technique offers a “more accurate determination” of the colors of fossilized animals, says Liliana D’Alba, an evolutionary biologist at the Naturalis Biodiversity Center in the Netherlands, who was not involved in the new study. For example, flying pterosaurs are presumed to have been brightly colored but have not been examined in detail.

Further research might even reveal how ginger hues evolved in the first place. “Scientists still don’t know how, or why, pheomelanin evolved,” Slater says, especially because its production can cause cancer in an animal’s tissues. “The fossil record might just unlock the mystery.”

1.75-billion-year-old fossils help explain how photosynthesis evolved


Microscope image of modern cyanobacteria called oscillatoria

Researchers have identified photosynthetic structures inside fossils of cyanobacteria that are 1.75 billion years old. The discovery is the oldest evidence of these structures to date, providing clues into how photosynthesis evolved.

Emmanuelle Javaux at the University of Liège in Belgium and her colleagues analysed fossils collected from rocks at three sites. The oldest site was the roughly 1.75-billion-year-old McDermott Formation in Australia, and the other two were the billion-year-old Grassy Bay Formation in Canada and the Bllc6 formation in the Democratic Republic of the Congo.

Read more We might officially enter the Anthropocene epoch in 2024

From these rocks, the researchers extracted fossilised cyanobacteria, which produce energy through photosynthesis. “They’re very tiny, less than a millimetre, so you cannot see them with your eyes,” says Javaux. She and her colleagues placed the fossils in resin and sliced them into 60 to 70-nanometre-thick sections using a diamond-edged knife, and then analysed the internal structures with an electron microscope.

They found that the cyanobacteria from Australia and Canada contained thylakoids, or membrane-bound sacs where photosynthesis occurs. “These are the oldest fossilised thylakoids that we know of today,” says Javaux. Previously, the oldest thylakoid fossils were about 550 million years old. “So, we pushed back the fossil record by 1.2 billion years,” she says.

This is important because not all cyanobacteria have thylakoids, and it is unclear when these structures, which made photosynthesis more efficient, first evolved, says Kevin Boyce at Stanford University in California. We can now date this diversification to at least 1.75 billion years ago, he says. The oldest fossils of cyanobacteria are about 2 billion years old, though other evidence, like geochemical signatures, indicate photosynthesis has been around for even longer than that.

Sign up to our Wild Wild Life newsletter

A monthly celebration of the biodiversity of our planet’s animals, plants and other organisms.

Sign up to newsletter

It is widely believed that cyanobacteria drove the accumulation of oxygen in Earth’s atmosphere 2.4 billion years ago. “One idea is that, perhaps, they invented thylakoids at this time, and this increased the quantity of oxygen on Earth,” says Javaux. “Now that we’ve found very old thylakoids and that they can be preserved in very old rocks, we think that we could go further back in time and try to test this hypothesis,” she says.

Paleontologists Unearth Fossil of Largest Dinosaur Ever Found in Europe From Man’s Back Garden in Portugal


From the backyard of a residence in the city of Pombal, Portugal, a team of paleontologists excavated the enormous fossilized rib cage of what could be the largest dinosaur ever found on the continent of Europe.

It was March 2017 when a homeowner in the Monte Agudo locality first stumbled upon bits of prehistoric bone while commencing construction work in his back garden. He promptly contacted scientists, who began digging that same year.

Only recently did the international team of researchers—consisting of Portuguese and Spanish paleontologists—reveal their findings: They had uncovered the rib cage and vertebrae possibly of an enormous sauropod dinosaur.

Epoch Times Photo
(Courtesy of Elisabete Malafaia/University of Lisbon)
Epoch Times Photo
(Courtesy of Elisabete Malafaia/University of Lisbon)
Epoch Times Photo
(Courtesy of Elisabete Malafaia/University of Lisbon)

Sauropods, such as brontosaurs and larger brachiosaurus, are characterized by their long necks and tails and their herbivorous diet. The brachiosaurus altithorax famously was the first 3D-rendered dinosaur to debut in the 1993 blockbuster “Jurassic Park.”

Sauropods are the largest of all dinosaurs and the biggest land animals ever to have lived.

The recent Pombal specimen is believed to belong to the Brachiosauridae family. It is estimated to be some 82 feet (25 meters) long from tip to tail, standing some 39 feet (12 meters) high. If true, this dinosaur would be the largest ever found in Europe.

The fossils were found in sedimentary rock from the Upper Jurassic period, which dates the behemoth some 145 million to 150 million years old.

Their characteristic long necks allowed Brachiosauridae dinosaurs to reach the foliage of tall trees that other sauropods could not.

Epoch Times Photo
An artist’s illustration of a brachiosaur of the Brachiosauridae family of sauropod. (Daniel Eskridge/Shutterstock)
Epoch Times Photo
(Courtesy of Elisabete Malafaia/University of Lisbon)

Besides their long necks and tails, they are characterized by forelimbs that are markedly larger than their hindlimbs, resulting in a longer torso and proportionally shorter tail—a trait that distinguishes them from other sauropods.

The Brachiosauridae family is comprised of several large dinosaur species that lived from the Upper Jurassic to the Lower Cretaceous (145 million to 100 million years ago).

Based on the disposition of the fossils found in the resident’s back garden, researchers believe it’s highly likely further excavation would yield more of the specimen’s skeleton. That prospect will be explored in future excavation campaigns.

“It is not usual to find all the ribs of an animal like this, let alone in this position, maintaining their original anatomical position,” Elisabete Malafaia, a researcher from the University of Lisbon, told physics.org.

“This mode of preservation is relatively uncommon in the fossil record of dinosaurs, in particular sauropods, from the Portuguese Upper Jurassic.”

Epoch Times Photo
(Courtesy of Elisabete Malafaia/University of Lisbon)
Epoch Times Photo
(Courtesy of Elisabete Malafaia/University of Lisbon)

The recent find in Pombal underlies greater significance for studying the continental fauna of the Upper Jurassic in Portugal.

“The research in the Monte Agudo paleontological locality confirms that the region of Pombal has an important fossil record of Late Jurassic vertebrates,” Malafaia said.

“In the last decades, the region has provided the discovery of abundant materials very significant for the knowledge of the continental faunas that inhabited the Iberian Peninsula at about 145 million years ago.”

Epoch Times Photo
(Courtesy of Elisabete Malafaia/University of Lisbon)
Epoch Times Photo
(Courtesy of Elisabete Malafaia/University of Lisbon)

Fossils Reveal an Ancient Climate Catastrophe, And We Need to Pay Attention


Scott Wing had spent more than a decade in the badlands of Wyoming’s Bighorn Basin, most of it thirsty, sunburned, and down on his hands and knees, digging endlessly through the dirt.

main article image

But he had never found anything like the fossil he now held in his hand – an exquisitely preserved leaf embossed on beige rock. Wing let out a jubilant laugh as he uncovered a second fossil and then a third. Each leaf was different from the others. Each was entirely new to him.

And then he started to cry.

This was exactly what he’d been searching for. When these strange fossils formed 56 million years ago, the planet was warming faster and more dramatically than at any point in its history – except the present.

Recounting the moment recently in his office at the Smithsonian’s National Museum of Natural History, Wing recalled the uneasy reaction of the field assistant with whom he’d been hiking. The young man looked understandably nervous that his supervisor was shedding tears over a handful of rocks.

“I said, ‘You just have to realize, I’ve been looking for this … since you were a kid. I’m unreasonably happy right now, but I’m not crazy,'” Wing chuckled. “So, that was the first really good set of plant fossils from the PETM. It was definitely a moment that I won’t forget.”

scott wing at bighorn basinScott Wing at Bighorn Basin (Laura Soul/The Washington Post)

The PETM is the Paleocene Eocene Thermal Maximum – an ungainly name for the time that’s considered one of Earth’s best analogues to this era of modern, human-caused global warming. In a matter of a few thousand years, huge amounts of carbon were injected into the atmosphere, causing global temperatures to rise between 5 and 8 degrees Celsius.

The rapid climate change disrupted weather, transformed landscapes, acidified oceans and triggered extinctions. It took more than 150,000 years for the world to recover.

If history is allowed to repeat itself, the consequences for modern life could be similarly long-lasting – which is why Wing is so determined to understand this ancient climate catastrophe.

“To me, it doesn’t lead me to be fearful,” Wing said. “It leads me to feel responsible. It leads me to feel that we need to be more informed.”

The first major evidence for the PETM was uncovered in the early 1990s by scientists looking at the transition from the Paleocene, the epoch after the extinction of the dinosaurs, to the Eocene, when modern mammal orders first emerged.

There was something strange about the thin band of sediment that represented the boundary between these two epochs: its ratio of carbon isotopes – different forms of the same element – was skewed.

Further research revealed that something between 4 trillion and 7 trillion tons of carbon – the rough equivalent of the planet’s entire current reserve of fossil fuels – had flooded the atmosphere in this period. It came from the decomposed remains of ancient algae and plants, so it contained a larger amount of carbon-12 – the isotope that is preferred for photosynthesis.

This “spike” in carbon-12 served as a marker of the PETM and allowed researchers to start tracking the effects of this sudden climate shift in rocks and fossils around the world.

Chalk deposits at the bottom of the ocean began to dissolve as carbon dioxide made seawater more acidic. Fossils of tiny, deep sea-dwelling creatures showed evidence of an oxygen shortage – a sign that the water was getting warmer.

Everywhere in the ocean, creatures adapted to the changed environment, or else they died out.

On land, mammals got smaller and smaller. Ancient ancestors of horses, tiny to begin with, shrunk 30 percent to the size of house cats. Abigail Carroll, a paleoclimatologist at the University of New Hampshire, said this was probably an adaptation to the warmer weather: Smaller bodies are easier to keep cool.

Weather also got wilder. Geologists have uncovered huge rocks that were carried long distances by intense floods – something that happens when dry spells are followed by extreme rains.

And then there are the plants in Wing’s collection at the National Museum of Natural History. Before the PETM, fossils suggest, Wyoming looked more like Florida – a lush, subtropical forest shaded by stately sycamores, silvery birches and waving palm trees.

But as the world warmed, the Bighorn Basin transformed. The fossils Wing finds from this period belong to plants that typically grow in hot, arid places even farther south – spindly bean plants and relatives of poinsettia and sumac.

These plants must have migrated north when the weather changed, following their preferred environment to ever higher latitudes.

A swarm of ravenous herbivores apparently followed. Many of Wing’s fossils are perforated with bite marks left behind by insects more numerous and diverse than the ones that preceded them.

The source of all this mayhem remains uncertain. Some have suggested the flood of carbon that set off the PETM came from volcanic eruptions or even a comet impact.

But the most popular theory suggests that reservoirs of solid methane buried in seafloor sediments were released when the ocean’s temperature and chemistry changed. Methane is a potent greenhouse gas, short-lived but harder-hitting than carbon dioxide.

Once it set global warming in motion, the rising temperatures may have triggered the release of even more methane and unlocked additional carbon sources – wildfires, shifting ocean currents, soil microbes that breathe out greenhouse gases – in a chain reaction that changed the planet.

To scientists today, many of the phenomena observed during the PETM will feel familiar – so familiar “it’s almost eerie,” Wing said.

Humans burning fossil fuels have produced the same kind of carbon isotope spike researchers find in 55-million-year-old rocks. The ocean has become about 30 percent more acidic and it’s losing oxygen – changes that are already triggering die-offs.

The world has witnessed dramatic weather extremes – deadly heat waves, severe storms, devastating droughts. In response to these shifts, plants and animals are showing up in new places at unusual times. There’s even evidence that some species, such as birds called red knots, are getting smaller as a result of the warmer climate.

Still, the past is an imperfect predictor of what might happen as the modern world continues to warm. For one thing, Earth on the eve of the PETM was already much hotter than it is today. With the poles unfrozen and the sea levels high, ancient creatures didn’t have to worry about the effects of melting ice, as we do today.

And the pace at which we are changing the climate outstrips anything in the geologic record. The carbon surge that set off the PETM unfolded over the course of as long as 5,000 years. At our current rate, humans will produce a comparable surge in a matter of a few centuries.

“In all the major ways it’s more perilous now than it would have been then,” Wing said.

But for scientists trying to predict our future peril, the PETM is an invaluable reference.

Jeff Kiehl, a senior scientist at the National Center for Atmospheric Research, uses research by Wing and others to test models of the interplay between carbon and climate.

“We don’t have data for the future but we do have data from the past,” Kiehl said. “This is where Scott’s work … has played a critical role.”

Data from the PETM and other times of global warming can be used to answer the questions that haunt modern climate scientists: How much will the Earth warm if atmospheric carbon doubles? What will happen to the world’s water as a result? How long will it take for things to return to normal?

This week, Wing and his colleagues at the Smithsonian have gathered 17 experts for a symposium on ancient climate. Over the course of two days, they will try to reconstruct a timeline of Earth’s temperature and atmospheric carbon levels since complex life began roughly a half-billion years ago.

“Science has finally gotten us to a point where we have some idea of what the consequences are of the things that we do,” Wing said.

“Now the question is, can we use that knowledge in something that starts to approach a wise way?”

Fossils Hint at Long-Sought Ancestor of Weirdest Human Species


700,000-year-old remains from Indonesia could elucidate the murky origins of the “hobbits” in our family tree

 
Skull of an anatomically modern human (right) dwarfs the H. floresiensis skull from the site of Liang Bua on Flores (left). The area highlighted in blue shows the area of jaw anatomy preserved in the new jaw fossil from Mata Menge.  

It is often said that every family has that one weird relative. Among the species that make up the human family, that relative is surely Homo floresiensis. Nicknamed the hobbit, this creature stood just over a meter tall with short legs, big feet and a tiny brain the size of a grapefruit—all primitive traits associated with human ancestors from millions of years ago. Yet H. floresiensis lived on the island of Flores in Indonesia as recently as 60,000 years ago, by which point human species with modern body and brain proportions—including Homo sapiens and Neandertals—were well established elsewhere in the world.

How did the Flores hobbits come to have their out-of-time features? Scientists have been puzzling over this question ever since the bizarre remains, found in a cave called Liang Bua in western Flores, were unveiled in 2004. Now new finds have emerged from another site on the island. Their discoverers say these fossils, which date to 700,000 years ago, illuminate the hobbits’ mysterious origin. But other researchers are not so sure.

Homo floresiensis is a mini human species that lived on the island of Flores in Indonesia as recently as 60,000 years ago. Reconstruction by Atelier Elisabeth Daynes. 

To date, paleoanthropologists have focused mainly on two competing hypotheses about how H. floresiensisevolved. The first holds that it descended from Homo erectus, a taller, larger-brained species that was the first member of the human family to spread out of Africa into other parts of the world. In this scenario the diminutive body and brain ofH. floresiensis evolved after its ancestor reached Flores, as adaptations to the limited food available on the island. Such dwarfing is well known in other large mammal species that colonize islands, including members of the elephant family, but had never before been documented in humans.

The second explanation posits that H. floresiensis descended from a more primitive ancestor that itself had a small body and brain, possibly Homo habilis or a member of the genus Australopithecus. In this scenario, H. floresiensis would have already been small when it arrived on Flores, retaining those primitive features—as well as others found in the arm, wrist, hand and foot—from its direct ancestor. But ancestors that primitive have never been discovered outside of Africa.

A third scenario, advanced by a small but vocal minority, is that the remains do not represent a distinct species at all but instead belong to H. sapiens individuals who had some kind of developmental disorder.

The absence of any human fossils from Flores that are older than the Liang Bua remains has hampered efforts to test these hypotheses—until now. In a pair of papers published in the June 9 Nature, Gerrit van den Bergh and Adam Brumm of the University of Wollongong in Australia and their colleagues announced their discovery of a collection of human fossils from a site in central Flores called Mata Menge that date to 700,000 years ago. The researchers have provisionally assigned the fossils—a piece of a small lower jaw and six small isolated teeth from at least three individuals—to H. floresiensis and suggest that they represent the direct ancestor of the Liang Bua hobbits.

Researchers have recovered a piece of lower jaw (above) and several teeth from the site of Mata Menge on Flores. The remains date to 700,000 years ago and are as small as those of the much younger H. floresiensis remains found at the site of Liang Bua. 

Analysis of the new jaw and teeth showed that they are similar in size and shape to their counterparts from Liang Bua, albeit less specialized in several respects, which is what one would expect to see in an ancestral hobbit. The authors note that other evidence from Mata Menge and Liang Bua support this close connection between the two groups: The simple stone tools at both sites are remarkably similar, too. The team also compared the Mata Menge jaw and teeth with those of other human species, including Australopithecus and H. habilis, and concluded that on the whole their find was more derived than those species, with features that call to mind H. erectus. Thus, they argue, their results support the hypothesis that H. floresiensis is a dwarfed descendant of H. erectusrather than a scion of a more primitive human ancestor.

The Mata Menge remains hint that this dwarfing occurred surprisingly quickly. The oldest known evidence of humans on Flores—a collection of stone tools from a site called Wolo Sege—date to around a million years ago. No human remains have turned up in association with those ancient tools, but if they were made by the big ancestor of the tiny Mata Menge people that lived 700,000 years ago, then the hobbits’ small body size may have evolved within perhaps just 300,000 years. That rapid diminution stands in sharp contrast to an evolutionary trend seen in other human fossils from the Pleistocene epoch, which spanned the time from around 2.6 million to 11,600 years ago. “Human body and brain size increased in the Pleistocene, but Flores shows that it was not unidirectional,” Van den Bergh said during a press teleconference on June 6.

Animal fossils found at the site show that the Mata Menge humans lived in a savannalike habitat with grasslands and fresh water nearby. Rodents, crocodiles, elephant relatives called stegodonts, Komodo dragons and an array of birds shared their world. Whether the pint-size people might have eaten any of these creatures is unknown; their stone tools would have enabled butchery, but the researchers did not find cut marks on any of the animal bones.

Paleoanthropologists not involved in the new discovery call the finds exciting and important. “They have made a very strong case” for a link between the Mata Menge fossils and the remains from Liang Bua, comments Fred Grine of Stony Brook University, S.U.N.Y., an expert on early human teeth. He notes that the small size of the new specimens would be enough to suggest such a relationship; the shape similarities strengthen the claim. Grine shares the team’s view that the remains support the notion that H. floresiensis is a dwarfed descendant of H. erectus. He adds that the new fossils kill the notion that the hobbits were merely diseased H. sapiens individuals. It is “difficult to argue this with another substantially older site now preserving the same type of material,” he explains.

Molar and incisor teeth are among the Mata Menge finds. 

But other experts have reservations about the team’s claims. Shara Bailey of New York University, who also specializes in fossil human teeth, says that nothing about the Mata Menge specimens ties them to H. floresiensisfrom Liang Bua apart from possibly the small size of the lower jaw. The shape characteristics of the Mata Menge teeth do not demonstrate a link, she contends, although they do not preclude such a link either. Bailey adds that the discovery of a lower third premolar (P3 in the parlance of anatomists) at Mata Menge could help settle the matter, because that tooth has a very distinctive shape in H. floresiensis from Liang Bua. “If they found a lower P3 that closely resembled the P3 of [Liang Bua], then I would be convinced,” she says.

Adam van Arsdale of Wellesley College, who specializes in fossil human jaws, expresses similar doubts about the argument that the Mata Menge remains represent the direct ancestor of the Liang Bua hobbits. “I am skeptical that the morphology of the specimens they have is sufficient to truly exclude specific relationships between the Mata Menge material and other Pleistocene [human] lineages,” he says. That is, the new finds are not diagnostic enough to rule out alternative possibilities for where they belong in the human family tree.

More definitive fossils may come. “The search is ongoing,” Brumm remarked in the press teleconference. He and his colleagues are now excavating sediments at Mata Menge dating to 900,000 years ago as well as other, earlier sites in the Soa Basin region of Flores. Topping his wish list: “legs and arms, wrists and feet, which are where the really curious features of floresiensis appear.”

Fossils show big bug ruled the seas 460 million years ago .


Earth’s first big predatory monster was a weird water bug as big as Tom Cruise, newly found fossils show.

Almost half a billion years ago, way before the dinosaurs roamed, Earth’s dominant large predator was a sea scorpion that grew to 5 feet 7 inches (170 centimetres), with a dozen claw arms sprouting from its head and a spike tail, according to a new study.

Geologists at the Iowa Geological Survey found 150 pieces of fossils about 60 feet (18 meters) under the Upper Iowa River, part of which had to be temporarily dammed to allow them to collect the specimens. Then scientists at Yale University determined they were a new species from about 460 million years ago, when Iowa was under an ocean

Then, all the action was in the sea and it was pretty small scale, said James Lamsdell of Yale, lead author of the study published on Monday in the journal BMC Evolutionary Biology.

“This is the first real big predator,” Lamsdell said. “I wouldn’t have wanted to be swimming with it. There’s something about bugs. When they’re a certain size, they shouldn’t be allowed to get bigger.”

Technically, this creature — named Pentecopterus decorahensis, after an ancient Greek warship — is not a bug by science definitions, Lamsdell said. It’s part of the eurypterid family, which are basically sea scorpions.

Those type of creatures “are really cool,” said Joe Hannibal, curator of invertebrate paleontology at the Cleveland Museum of Natural History. Hannibal wasn’t part of the study, but praised it for being well done, adding “this species is not particularly bizarre — for a eurypterid.”

Unlike modern land scorpions, this creature’s tail didn’t sting. It was used more for balance and in swimming, but half this creature’s length was tail, Lamsdell said.

There were larger sea scorpions half way around the world at the same time but those were more bottom feeders instead of dominant predators, he said.

Lamsdell could tell by the way the many arms come out of the elongated head how this creature grabbed prey and pushed it to its mouth.

“It was obviously a very aggressive animal,” Lamsdell said. “It was a big angry bug.”

Astrobiologists confirming extraterrestrial life.


http://csglobe.com/astrobiologists-discover-fossils-in-meteorite-fragments-confirming-extraterrestrial-life/

New fossils hint at ancestral split .


African discoveries point to two early species in the human genus.

Newly discovered face and jaw fossils show that at least two species of the human genus Homo lived alongside each other in East Africa nearly 2 million years ago.

These new finds are a good match for a roughly 2 million-year-old Homo brain case and face excavated in 1972 in the same part of East Africa, reports a team led by anthropologist Meave Leakey of the Turkana Basin Institute in Nairobi, Kenya. Long considered a puzzling exception among early Homo finds, the 1972 discovery features big bones and a flat, upright face and represents a species apart, Leakey and her colleagues conclude in the Aug. 9 Nature.

Until now, researchers have found it difficult to exclude the possibility that the large-faced fossil — known as KNM-ER 1470 — came from a male of the same species as smaller, early Homo finds in East Africa.

“After so many years of questions about the identity of the enigmatic 1470 fossil, the chances that it’s from a separate species have greatly improved with our new discoveries,” says anthropologist and study coauthor Fred Spoor of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany.

Leakey and her colleagues unearthed the new fossils from 2007 to 2009 along the shore of Kenya’s Lake Turkana. Previously dated volcanic ash layers at the site place the finds at between 1.78 million and 1.95 million years old. Further study is needed before assigning the early Homo fossils to particular species, Spoor says, and it’s unclear whether either species led to Homo erectus or to people today. For now, he proposes only that at least two Homo species inhabited East Africa nearly 2 million years ago.

Anthropologist Bernard Wood of George Washington University in Washington, D.C., suspects that Leakey’s team has found fossil evidence for a new, early Homo species distinct from both the 1470 specimen, which he classes as H. rudolfensis, and other Homo fossils from that time, which he groups under H. habilis. The newly found face fossil, which belonged to a child about 8 years old, mirrors the shape of the adult 1470 face, Wood says. But the nearly complete lower jaw and partial lower jaw that Leakey’s team found fit neither in H. rudolfensis nor in H. habilis, he contends.

Evolutionary scientists disagree about whether early Homo fossils can be grouped even into those two species.

Like Wood, anthropologist Donald Johanson of the Institute of Human Origins at Arizona State University in Tempe regards the new face fossil, from the child, and the 1470 fossil as H. rudolfensis. Homo split into at least three African species, including Homo erectus, by about 1.7 million years ago, Johanson says. His team previously excavated the earliest known Homo fossil, an upper jaw from Hadar, Ethiopia, that dates to 2.4 million years ago.

Even Spoor’s proposal at least two speices inhabited East Africa 2 million years ago goes too far, contends anthropologist Tim White of the University of California, Berkeley. Too few early Homo fossils exist to rule out whether the new finds, and the 1470 specimen, fall within a single species that included substantial skeletal differences across individuals and between sexes, White says.

Source: http://www.sciencenews.org