Global crop collapse now a certainty… widespread famine to plague planet Earth from 2022 – 2024… it is set in motion and cannot be stopped


A convergence of horrifying events have set into a motion an irreversible collapse of food production and crop harvests that will lead to global famine all the way through 2024. These events cannot be stopped for the simple reason that plants take time to grow. You can’t create crops instantly, and if they don’t get planted (or they get destroyed), there’s no instant replacement.

The reasons for the coming global famine include:

  • Floods and droughts causing sharp drops in crop production in China, Russia and the USA, among other nations.
  • Economic sanctions against Russia causing a halting of exports for food and fertilizer.
  • War in Ukraine, leading to a halting of the 2022 planting season for wheat, corn, soy and other crops.
  • War in the Black Sea, blocking ship movements in the ports (such as Odessa) which normally export crops.
  • The Biden admin’s shutting down of fossil duel production in the USA, adding significant costs to fertilizers and agricultural operations.
  • Global fiat currency money printing, making food inflation reach atrocious levels.

Importantly, all this coalesces into two primary problems that will now accelerate across the world:

  1. Food SCARCITY
  2. Food INFLATION

Scarcity, of course, means there’s no remaining supply no matter what the cost. Inflation means the food that is available will be significantly higher in price. Both of them cause people to panic, ultimately leading to widespread civil unrest (see below).

Understanding farm and crop inputs

Farmers are right now reporting a roughly 300% increase in their cost to produce crops such as wheat. This is due to three primary inputs:

Brighteon.TV
  1. The cost of fertilizer and seed.
  2. The cost of fuel to power agricultural equipment.
  3. The availability of tractors and other equipment (and their parts) in order to carry out mechanized agricultural operations.

Importantly, all three of these inputs are heavily strained due to the conditions mentioned above.

In addition to these factors, fuel costs significantly elevate transportation expenses to transport grains to grain storage and milling providers. Thus, rising fuel costs hit farmers twice: First for the cost of running their equipment, and secondly in the transportation costs.

Sadly, it looks like diesel fuel is headed toward $6 / gallon, and this is going to put severe upward pressure on food prices across the board. As I say in the podcast, elections have consequences… and rigged elections have dire consequences. (Joe Biden is punishing America with economic sanctions against our entire energy sector while having no such sanctions on Russia’s energy exports.)

Fertilizer costs have tripled, and fertilizer supply is growing scarce

Fertilizer prices have tripled and will likely go higher, especially as Russia has halted fertilizer exports and shut down natural gas pipelines to Western Europe. As a result, the fertilizer supply is growing scarce. About 5 billion people on the planet depend on fossil fuel-created fertilizer for their primary source of food. Thus, without fertilizer — if it were to go to zero — about 5 billion people starve to death.

I am not predicting the starvation of 5 billion people, since fertilizer production isn’t zero. But it is easily down by 25% – 30% right now, perhaps more, and that means somewhere approaching 2 billion people (or more) are going to face real famine / starvation in the crop seasons ahead. Very few people understand that food comes from fertilizer which is made using hydrocarbons. This is why left-wing activists are so eager to shut down pipelines, having no clue this will shut down their own food production as a result.

Extreme food scarcity to become apparent at the retail level this summer

There is a delay time between crop yield collapse and food scarcity at retail (grocery stores). Right now in March, we are eating the winter harvest of wheat. By late summer, we will be depending on wheat from the spring wheat crops around the world, and those crops just aren’t getting planted at the level necessary to feed the world.

The StrangeSounds.org website recently published a good overview of what they call the “wheat apocalypse.” From that article:

The wheat outlook looks grim… All over the world…

A limited supply of soft white wheat, the primary type of wheat grown in the Inland Northwest, has helped lead to a six-year low for wheat exports from the United States. That’s according to the USDA wheat report for February. The report also states that 71 percent of U.S. winter wheat is being hit by drought in 2022.

Egypt’s food security crisis now poses an existential threat to its economy. The fragile state of Egypt’s food security stems from the agricultural sector’s inability to produce enough cereal grains, especially wheat, and oilseeds to meet even half of the country’s domestic demand.

[China’s] Minister of Agriculture and Rural Affairs Tang Renjian said that rare heavy rainfall last year delayed the planting of about one-third of the normal wheat acreage.

Drought has shriveled Canada’s wheat crop to its smallest in 14 years, and its canola harvest to a nine-year low, a government report showed on Monday.

Parched soils and record-hot temperatures in Canada’s western crop belt sharply reduced farm yields of one of the world’s biggest wheat-exporting countries and largest canola-growing nation. The drought has forced millers and bakers to pay more for spring wheat, and drove canola prices to record highs.

On top of all that, Hungary has halted all grain exports in order to protect its domestic supply. In this article on Natural News, author JD Heyes lists the countries most likely to experience serious disruptions due to food scarcity. They include Egypt, Thailand and the Philippines.

By this summer, food shelves are going to look frighteningly empty across America, Canada and Western Europe

The upshot of all this is that food shelves are going to look downright frightening in 2022, and for the shelves that actually have food, it’s going to cost perhaps twice as much. Some items might see prices triple.

Even Reuters is now openly reporting that a United Nations agency says food inflation has hit 20%. And those are slightly old numbers. By the time they factor in the summer and fall of 2022, it’s going to be much closer to 50%.

Shockingly, food basics are going to require a larger and larger percentage of workers’ paychecks, taking away their ability to pay for fuel (which is also skyrocketing) or to purchase clothing, housing, etc.

The only factor that may actually reduce the demand for global food is the global vaccine die-off caused by mRNA / spike protein injections that are killing people are record numbers. The covid bioweapon, after all, is a depopulation weapon.

The net result is going to be global uprisings and social unrest on a scale we’ve never seen before

As covered in today’s podcast (below), the net effect of all this is going to be global uprisings, chaos and social unrest on an unprecedented scale.

Ever heard the saying about “nine meals from anarchy?” That’s what we’re about to witness later this year, in 2022.

It doesn’t mean that every city will collapse into instant chaos, but food scarcity, food inflation and energy inflation will create conditions of extreme poverty and desperation among the population. As a result, you’re going to witness more of the following:

  • Flash mob looting of grocery stores, followed by increased security at grocery retailers.
  • Gunpoint robberies of people exiting grocery stores, carrying groceries.
  • Highway robberies of transport trucks that are delivering goods to grocery retailers (ripped right out of Venezuela).
  • Increased carjackings, home invasions and crime derived from desperation and starvation. (While Democrats continue to “defund the police.”)

Microbes ‘cheaper, fairer’ for boosting yields than GM.


Speed read

  • Microbes may offer a more equitable choice for smallholder farmers
  • Improvements in technology must continue to get them from the lab to the field
  • Melon yields in Honduras have already benefited from microbes.

Adapting microbes that dramatically increase crop yields while reducing demand for fertilisers and pesticides through selective breeding or genetic engineering could be cheaper and more flexible than genetically modifying plants themselves, says an author of a report.
 
Microbes, such as beneficial bacteria, fungi and viruses, could be produced locally for smallholder 
farmers to significantly improve food security and incomes in developing regions, believes Ann Reid, director of the American Academy of Microbiology and co-author of a report published by the organisation last month (27 August).
 
“Genetic modification of crop plants, which has seen a huge investment, is closed to all but the biggest agricultural companies,” she tells SciDev.Net.
 
“Optimisation of microbes could be done at the level of the local community college and is much more obtainable for a smallholder farmer.”
 
Her comments echo the findings of the report — the product of an expert meeting in 2012 — which underscored the significant impact microbes could have on food production by increasing crops’ absorption of nutrients, resistance to disease and environmental stresses, and even improving flavour.
 

“Optimisation of microbes could be done at the level of the local community college and is much more obtainable for a smallholder farmer.”

Ann Reid, American Academy of Microbiology

As well as to accentuate naturally occurring traits such as the secretion of pest-killing toxins or nitrogen-fixation, the modification of microbes is often needed to allow them to be grown in large numbers out of their natural environment.
 
For example, researchers in Colombia could only produce large quantities of a fungus that improves the nutrient absorption of cassava once they bred a strain of that fungus that was capable of growing on carrot roots.
 
Recent technological developments in rapid DNA sequencing, imaging and computer modelling can help provide further solutions, as well as building a greater understanding of the complex environment that microbes themselves need to flourish, the report says.
 
These advances raise the possibility that, within two decades, microbes could increase food production by a fifth and reduce fertiliser demands by the same proportion, it finds.
 
But to achieve this ambitious goal, the research community must engage in curiosity-driven basic research, develop even cheaper sequencing techniques, and establish a process to move discoveries from the lab to the field, it says.
 
Reid adds that, unlike genetic modification, which requires farmers to regularly buy improved seeds, microbes may be able to stay in the soil indefinitely.
 
But larger universities are still needed to drive more-complex areas of investigation, which inevitably requires funding, she says. “We wanted to get the word out that this could be a big-bang-for-your- buck area for funding agencies.”
 
Matteo Lorito, a professor of plant pathology at the University of Naples, Italy, agrees that sophisticated research centres must be involved in identifying and selecting suitable microbes and techniques.
 
But once this groundwork has been done, growing microbes will require as little as a fermenting tank, he says.
 
The impact of this approach is already being seen in areas such as Honduras, where melon yields have been improved by 15 per cent by applying a fungus that boosts the plants’ defence mechanisms.
 
Other crops such as maize, tomatoes and wheat could see rises in production of more than 50 per cent from such techniques, he believes.
 
But Ken Giller, professor of plant production systems at the Netherland’s Wageningen University, says that much more work needs to be done, particularly on how to get the microbes into the soil, before farmers will benefit, he says.
 
“Molecular biology has been incredibly important in understanding biology in general, which has helped when thinking about solutions [for food production],” he tells SciDev.Net.
 
“But in terms of the manipulation of these processes to make an impact in the field, we have yet to make any great inroads