What Did Stephen Hawking Do? The Physicist’s 5 Biggest Achievements


On Wednesday, world-renowned astrophysicist Stephen Hawking died at age 76 in his home in Cambridge, England. He lived for 55 years with the neurological disease amyotrophic lateral sclerosis (ALS), and as a result, he spent most of his life using a wheelchair, which, for the last decade, also included hands-free communication capability that gave him the computerized voice with which so many people now associate him.

As a working physicist and prolific public figure, Hawking helped revolutionize the field of astrophysics. His scholarship helped elucidate our modern understanding of the universe and its origins, and he was quick to share his views on humanity and society. While his achievements are many, there are five in particular worth noting.

Space

5. Stephen Hawking Theorized How Black Holes Emit Information

Black holes are notoriously hungry phenomena, distorting spacetime and sucking in any matter that passes within their event horizon. But Hawking theorized that black holes actually radiate energy as a result of quantum effects near the event horizon. We could only observe this theoretical energy, which is referred to as “Hawking radiation,” in smaller black holes that are about the same mass as our sun. In larger black holes, it would be overwhelmed by the gas falling into the black hole. Hawkin’s hypothesized phenomenon hasn’t been directly observed, but as Inverse previously reported, physicists are working on it.

'Big Bang Theory' loved its nerdy celeb cameos, and Stephen Hawking's was an absolute treasure.

4. Stephen Hawking Proposed That the Singularity Was an Essential Element of the Big Bang Theory

The Big Bang Theory — the physics one, not the television one — proposes the universe began with a powerful expansion that started with one point, the singularity. Before Hawking’s time, physicists tried to reconcile the apparent paradox of the singularity. The idea of a single point of infinite density simply didn’t mesh with the conventional views of physics in the middle of the 20th century. In 1970, though, Hawking co-authored a paper with Roger Penrose that began to reconcile this notion.

This paper, titled “The singularities of gravitational collapse and cosmology,” countered the widely discussed notion that the Big Bang was preceded by the universe contracting. Physicists generally accept this version of the Big Bang Theory, in which there was nothing before the beginning of the universe.

Ripples in spacetime.

3. Stephen Hawking Proposed There Was No Meaningful Distinction Between Space and Time in the Early Universe

In his 1988 best-selling book, A Brief History of Time, Hawking proposed that at the very beginning of the universe, space existed, but time as we know it did not yet exist. Astrophysicists continue to describe space and time as being intrinsically tied to one another, but Hawking hypothesized that at the very beginning of everything there was no meaningful distinction. The curious public digested this hypothesis in Hawking’s book, but physicists continue to debate his idea.

Stephen Hawking, Big Bang

2. Stephen Hawking Provided Evidence That Time Travel Is Impossible

Back in 2009, Hawking hosted a time traveler party, inviting time travelers to join him for a reception to celebrate their achievements. Here’s the catch, though: He didn’t send out the invitations until the next day. The idea was that anyone who actually showed up would clearly be legit since nobody knew about the party before it happened. On Hawking’s 75th birthday in 2017, he announced that nobody had shown up to his party. While this isn’t definitive proof that time travel doesn’t exist, it’s pretty strong evidence. After all, if you discovered how to travel through time, wouldn’t Hawking’s time travel party be one of your first destinations?

Stephen Hawking on 'The Simpsons'

1. Stephen Hawking Played Himself Four Times on The Simpsons

Sure, revolutionizing astrophysics is great, but what about having your cartoon avatar immortalized for posterity? In addition to playing himself on Star Trek, Hawking appeared on The Simpsons four times between 1999 and 2010. Sure, this achievement wasn’t scientific, strictly speaking, but it does embody the character and public image of one of the best-known scientists in modern history. As a physicist, Hawking didn’t create much original work in his later years. But as a science popularizer, he continued to inspire people to learn about the world around them. And as far as monumental achievements go, that one’s hard to overstate.

How the Universe Got Its Bounce Back


Humans have always entertained two basic theories about the origin of the universe. “In one of them, the universe emerges in a single instant of creation (as in the Jewish-Christian and the Brazilian Carajás cosmogonies),” the cosmologists Mario Novello and Santiago Perez-Bergliaffa noted in 2008. In the other, “the universe is eternal, consisting of an infinite series of cycles (as in the cosmogonies of the Babylonians and Egyptians).” The division in modern cosmology “somehow parallels that of the cosmogonic myths,” Novello and Perez-Bergliaffa wrote.

In recent decades, it hasn’t seemed like much of a contest. The Big Bang theory, standard stuff of textbooks and television shows, enjoys strong support among today’s cosmologists. The rival eternal-universe picture had the edge a century ago, but it lost ground as astronomers observed that the cosmos is expanding and that it was small and simple about 14 billion years ago. In the most popular modern version of the theory, the Big Bang began with an episode called “cosmic inflation” — a burst of exponential expansion during which an infinitesimal speck of space-time ballooned into a smooth, flat, macroscopic cosmos, which expanded more gently thereafter.

With a single initial ingredient (the “inflaton field”), inflationary models reproduce many broad-brush features of the cosmos today. But as an origin story, inflation is lacking; it raises questions about what preceded it and where that initial, inflaton-laden speck came from. Undeterred, many theorists think the inflaton field must fit naturally into a more complete, though still unknown, theory of time’s origin.

But in the past few years, a growing number of cosmologists have cautiously revisited the alternative. They say the Big Bang might instead have been a Big Bounce. Some cosmologists favor a picture in which the universe expands and contracts cyclically like a lung, bouncing each time it shrinks to a certain size, while others propose that the cosmos only bounced once — that it had been contracting, before the bounce, since the infinite past, and that it will expand forever after. In either model, time continues into the past and future without end.

With modern science, there’s hope of settling this ancient debate. In the years ahead, telescopes could find definitive evidence for cosmic inflation. During the primordial growth spurt — if it happened — quantum ripples in the fabric of space-time would have become stretched and later imprinted as subtle swirls in the polarization of ancient light called the cosmic microwave background. Current and future telescope experiments are hunting for these swirls. If they aren’t seen in the next couple of decades, this won’t entirely disprove inflation (the telltale swirls could simply be too faint to make out), but it will strengthen the case for bounce cosmology, which doesn’t predict the swirl pattern.

Already, several groups are making progress at once. Most significantly, in the last year, physicists have come up with two new ways that bounces could conceivably occur. One of the models, described in a paper that will appear in the Journal of Cosmology and Astroparticle Physics, comes from Anna Ijjas of Columbia University, extending earlier work with her former adviser, the Princeton professor and high-profile bounce cosmologist Paul Steinhardt. More surprisingly, the other new bounce solution, accepted for publication in Physical Review D, was proposed by Peter GrahamDavid Kaplan and Surjeet Rajendran, a well-known trio of collaborators who mainly focus on particle physics questions and have no previous connection to the bounce cosmology community. It’s a noteworthy development in a field that’s highly polarized on the bang vs. bounce question.

The question gained renewed significance in 2001, when Steinhardt and three other cosmologists argued that a period of slow contraction in the history of the universe could explain its exceptional smoothness and flatness, as witnessed today, even after a bounce — with no need for a period of inflation.

The universe’s impeccable plainness, the fact that no region of sky contains significantly more matter than any other and that space is breathtakingly flat as far as telescopes can see, is a mystery. To match its present uniformity, experts infer that the cosmos, when it was one centimeter across, must have had the same density everywhere to within one part in 100,000. But as it grew from an even smaller size, matter and energy ought to have immediately clumped together and contorted space-time. Why don’t our telescopes see a universe wrecked by gravity?

“Inflation was motivated by the idea that that was crazy to have to assume the universe came out so smooth and not curved,” said the cosmologist Neil Turok, director of the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, and co-author of the 2001 paper on cosmic contractionwith Steinhardt, Justin Khouryand Burt Ovrut. In the inflation scenario, the centimeter-size region results from the exponential expansion of a much smaller region — an initial speck measuring no more than a trillionth of a trillionth of a centimeter across. As long as that speck was infused with an inflaton field that was smooth and flat, meaning its energy concentration didn’t fluctuate across time or space, the speck would have inflated into a huge, smooth universe like ours. Raman Sundrum, a theoretical physicist at the University of Maryland, said the thing he appreciates about inflation is that “it has a kind of fault tolerance built in.” If, during this explosive growth phase, there was a buildup of energy that bent space-time in a certain place, the concentration would have quickly inflated away. “You make small changes against what you see in the data and you see the return to the behavior that the data suggests,” Sundrum said.

However, where exactly that infinitesimal speck came from, and why it came out so smooth and flat itself to begin with, no one knows. Theorists have found many possible ways to embed the inflaton field into string theory, a candidate for the underlying quantum theory of gravity. So far, there’s no evidence for or against these ideas.

Cosmic inflation also has a controversial consequence. The theory — which was pioneered in the 1980s by Alan GuthAndrei LindeAleksei Starobinsky and (of all people) Steinhardt, almost automatically leads to the hypothesis that our universe is a random bubble in an infinite, frothing multiverse sea. Once inflation starts, calculations suggest that it keeps going forever, only stopping in local pockets that then blossom into bubble universes like ours. The possibility of an eternally inflating multiverse suggests that our particular bubble might never be fully understandable on its own terms, since everything that can possibly happen in a multiverse happens infinitely many times. The subject evokes gut-level disagreement among experts. Many have reconciled themselves to the idea that our universe could be just one of many; Steinhardt calls the multiverse “hogwash.”

This sentiment partly motivated his and other researchers’ about-face on bounces. “The bouncing models don’t have a period of inflation,” Turok said. Instead, they add a period of contraction before a Big Bounce to explain our uniform universe. “Just as the gas in the room you’re sitting in is completely uniform because the air molecules are banging around and equilibrating,” he said, “if the universe was quite big and contracting slowly, that gives plenty of time for the universe to smooth itself out.”

Although the first contracting-universe models were convoluted and flawed, many researchers became convinced of the basic idea that slow contraction can explain many features of our expanding universe. “Then the bottleneck became literally the bottleneck — the bounce itself,” Steinhardt said. As Ijjas put it, “The bounce has been the showstopper for these scenarios. People would agree that it’s very interesting if you can do a contraction phase, but not if you can’t get to an expansion phase.”

 

Bouncing isn’t easy. In the 1960s, the British physicists Roger Penrose and Stephen Hawking proved a set of so-called “singularity theorems” showing that, under very general conditions, contracting matter and energy will unavoidably crunch into an immeasurably dense point called a singularity. These theorems make it hard to imagine how a contracting universe in which space-time, matter and energy are all rushing inward could possibly avoid collapsing all the way down to a singularity — a point where Albert Einstein’s classical theory of gravity and space-time breaks down and the unknown quantum gravity theory rules. Why shouldn’t a contracting universe share the same fate as a massive star, which dies by shrinking to the singular center of a black hole?

Both of the newly proposed bounce models exploit loopholes in the singularity theorems — ones that, for many years, seemed like dead ends. Bounce cosmologists have long recognized that bounces might be possible if the universe contained a substance with negative energy (or other sources of negative pressure), which would counteract gravity and essentially push everything apart. They’ve been trying to exploit this loophole since the early 2000s, but they always found that adding negative-energy ingredients made their models of the universe unstable, because positive- and negative-energy quantum fluctuations could spontaneously arise together, unchecked, out of the zero-energy vacuum of space. In 2016, the Russian cosmologist Valery Rubakov and colleagues even proved a “no-go” theorem that seemed to rule out a huge class of bounce mechanisms on the grounds that they caused these so-called “ghost” instabilities.

Then Ijjas found a bounce mechanism that evades the no-go theorem. The key ingredient in her model is a simple entity called a “scalar field,” which, according to the idea, would have kicked into gear as the universe contracted and energy became highly concentrated. The scalar field would have braided itself into the gravitational field in a way that exerted negative pressure on the universe, reversing the contraction and driving space-time apart —without destabilizing everything. Ijjas’ paper “is essentially the best attempt at getting rid of all possible instabilities and making a really stable model with this special type of matter,” said Jean-Luc Lehners, a theoretical cosmologist at the Max Planck Institute for Gravitational Physics in Germany who has also worked on bounce proposals.

What’s especially interesting about the two new bounce models is that they are “non-singular,” meaning the contracting universe bounces and starts expanding again before ever shrinking to a point. These bounces can therefore be fully described by the classical laws of gravity, requiring no speculations about gravity’s quantum nature.

Graham, Kaplan and Rajendran, of Stanford University, Johns Hopkins University and the University of California, Berkeley, respectively, reported their non-singular bounce idea on the scientific preprint site arxiv.org in September 2017. They found their way to it after wondering whether a previous contraction phase in the history of the universe could be used to explain the value of the cosmological constant — a mystifyingly tiny number that defines the amount of dark energy infused in the space-time fabric, energy that drives the accelerating expansion of the universe.

In working out the hardest part — the bounce — the trio exploited a second, largely forgotten loophole in the singularity theorems. They took inspiration from a characteristically strange model of the universe proposed by the logician Kurt Gödel in 1949, when he and Einstein were walking companions and colleagues at the Institute for Advanced Study in Princeton, New Jersey. Gödel used the laws of general relativity to construct the theory of a rotating universe, whose spinning keeps it from gravitationally collapsing in much the same way that Earth’s orbit prevents it from falling into the sun. Gödel especially liked the fact that his rotating universe permitted “closed timelike curves,” essentially loops in time, which raised all sorts of Gödelian riddles. To his dying day, he eagerly awaited evidence that the universe really is rotating in the manner of his model. Researchers now know it isn’t; otherwise, the cosmos would exhibit alignments and preferred directions. But Graham and company wondered about small, curled-up spatial dimensions that might exist in space, such as the six extra dimensions postulated by string theory. Could a contracting universe spin in those directions?

Imagine there’s just one of these curled-up extra dimensions, a tiny circle found at every point in space. As Graham put it, “At each point in space there’s an extra direction you can go in, a fourth spatial direction, but you can only go a tiny little distance and then you come back to where you started.” If there are at least three extra compact dimensions, then, as the universe contracts, matter and energy can start spinning inside them, and the dimensions themselves will spin with the matter and energy. The vorticity in the extra dimensions can suddenly initiate a bounce. “All that stuff that would have been crunching into a singularity, because it’s spinning in the extra dimensions, it misses — sort of like a gravitational slingshot,” Graham said. “All the stuff should have been coming to a single point, but instead it misses and flies back out again.”

The paper has attracted attention beyond the usual circle of bounce cosmologists. Sean Carroll, a theoretical physicist at the California Institute of Technology, is skeptical but called the idea “very clever.” He said it’s important to develop alternatives to the conventional inflation story, if only to see how much better inflation appears by comparison — especially when next-generation telescopes come online in the early 2020s looking for the telltale swirl pattern in the skycaused by inflation. “Even though I think inflation has a good chance of being right, I wish there were more competitors,” Carroll said. Sundrum, the Maryland physicist, felt similarly. “There are some questions I consider so important that even if you have only a 5 percent chance of succeeding, you should throw everything you have at it and work on them,” he said. “And that’s how I feel about this paper.”

As Graham, Kaplan and Rajendran explore their bounce and its possible experimental signatures, the next step for Ijjas and Steinhardt, working with Frans Pretorius of Princeton, is to develop computer simulations. (Their collaboration is supported by the Simons Foundation, which also funds Quanta Magazine.) Both bounce mechanisms also need to be integrated into more complete, stable cosmological models that would describe the entire evolutionary history of the universe.

Beyond these non-singular bounce solutions, other researchers are speculating about what kind of bounce might occur when a universe contracts all the way to a singularity — a bounce orchestrated by the unknown quantum laws of gravity, which replace the usual understanding of space and time at extremely high energies. In forthcoming work, Turok and collaborators plan to propose a model in which the universe expands symmetrically into the past and future away from a central, singular bounce. Turok contends that the existence of this two-lobed universe is equivalent to the spontaneous creation of electron-positron pairs, which constantly pop in and out of the vacuum. “Richard Feynman pointed out that you can look at the positron as an electron going backwards in time,” he said. “They’re two particles, but they’re really the same; at a certain moment in time they merge and annihilate.” He added, “The idea is a very, very deep one, and most likely the Big Bang will turn out to be similar, where a universe and its anti-universe were drawn out of nothing, if you like, by the presence of matter.”

It remains to be seen whether this universe/anti-universe bounce model can accommodate all observations of the cosmos, but Turok likes how simple it is. Most cosmological models are far too complicated in his view. The universe “looks extremely ordered and symmetrical and simple,” he said. “That’s very exciting for theorists, because it tells us there may be a simple — even if hard-to-discover — theory waiting to be discovered, which might explain the most paradoxical features of the universe.”

‘Huge’ Physics Finding Supports Big Bang Theory.


First evidence of gravitational waves sheds light on the creation of the universe.

Scientists announced today (March 17) that they had found the first direct evidence of the dramatic expansion that created the known universe, known as cosmic inflation, or the “bang” in the Big Bang. This dramatic expansion is thought to have occurred in the first instants of existence, nearly 14 billion years ago, causing the universe to expand beyond the reach of the most powerful telescopes. 

In 1979, a physicist named Alan Guth came up with the theory of cosmic inflation, and theorized that such an event would create ripples in space-time called gravitational waves. But their existence remained hypothetical. Today, a team of researchers said that they had detected these gravitational waves, using a telescope near the South Pole.

“This is huge,” Marc Kamionkowski, a researcher at Johns Hopkins University who was not involved in the discovery but who predicted how these gravitational wave imprints could be found, told Scientific American. “It’s not every day that you wake up and find out something completely new about the early universe.” He added that the results looked good, although they would need to be verified by others to hold up.

The finding seems to support the idea that the observable universe is only one of many, as the New York Times reports:

Confirming inflation would mean that the universe we see… is only an infinitesimal patch in a larger cosmos whose extent, architecture and fate are unknowable. Moreover, beyond our own universe there might be an endless number of other universes bubbling into frothy eternity, like a pot of pasta water boiling over.

As the Times tells it, Andrei Linde, who first described the most popular variant of inflation, known as chaotic inflation, in 1983, was about to go on vacation in the Caribbean last week when a colleague named Chao-Lin Kuo knocked on his door with a bottle of Champagne to tell him the news.

Universe cooling down exactly as Big Bang theory predicted .


http://m.indianexpress.com/news/%22universe-cooling-down-exactly-as-big-bang-theory-predicted%22/1064324/